

D2.2: Spreadsheet with LCCs

COST REDUCTION AND MARKET ACCELERATION FOR VIABLE NEARLY ZERO-ENERGY BUILDINGS

Effective processes, robust solutions, new business models and reliable life cycle costs, supporting user engagement and investors' confidence towards net zero balance.

CRAVEzero - Grant Agreement No. 741223 WWW.CRAVEZERO.EU

Co-funded by the Horizon 2020

Framework Programme of the European Union

This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

D2.2: Spreadsheet with LCCs A database for benchmarking actual NZEB lifecycle costs of the case studies

Authors: Roberta Pernetti¹, Federico Garzia¹, Giulia Paoletti¹

Contributors: Tobias Weiss², David Venus², Anna Maria Fulterer², Klara Meier³, Jens Gloeggler³, Bjorn Berggren⁴; Gerold Koehler⁵; Thomas Stoecker⁵; Christian Denacquard⁶, Marine Thouvenot⁶, Gabriele Meneguzzi⁷, Cristina Foletti⁷, Gianluca Gualco⁷, Mirco Balachia⁷

> ¹ eurac research ² AEE INTEC ³ATP Sustain ⁴ Skanska ⁵ Koeler & Meinzer ⁶ Bouygues Construction ⁷ Moretti ⁸ 3i engineering

> > August 2018

Disclaimer Notice: This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

FOREWORD

The present report has been developed within Task 2.2, that set-up the basis for the further project developments of Work package 5, dealing with effective nZEB business models and Work Package 6, in which parametric simulations will be carried out.

Task 2.2 aims to collect and to structure the relevant information about Life Cycle Cost of nZEBs in an easy to use spreadsheet, adaptable for different contexts and including all the phases of the building life.

The spreadsheet has been tested and implemented on a series of nZEB case studies provided by the industry partners of the project.

Cost optimal and nearly zero-energy performance levels are principles initiated by the European Union's (EU) Energy Performance of Buildings Directive, which was recast in 2010. These principles will be significant drivers in the construction sector in the next few years because all new buildings in the EU from 2021 onwards are expected to be nearly zero-energy buildings (nZEB). While nZEB realized so far have shown that the nearly-zero energy target can be achieved using existing technologies and practices, most experts agree that a broad-scale shift towards nearly-zero energy buildings requires significant adjustments to current building market structures. The main challenge is the cost-effective integration of efficient solution sets and renewable energy systems, in a form that fits with the development, manufacturing, and construction industry processes, as well as with planning, design, and procurement procedures.

CRAVEzero will focus on proven and new approaches to reduce the costs of nZEBs at all stages of the life cycle. The primary goal is to identify and eliminate the extra costs for nZEBs related to processes, technologies, building operation, and to promote innovative business models taking into account the cost-effectiveness for all the stakeholders

© Copyright by the Horizon 2020 Framework Programme of the European Union

Published by eurac research, Italy

Disclaimer Notice: This document has been prepared for the European Commission however, it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

EXECUTIVE SUMMARY

The EPBD recast (EPBD recast-European Commission, 2010) established that all new buildings have to reach by the end of 2020 the nZEB target set by the Member States (MS). In order to reach the nZEB targets while keeping investments sustainable, it is strategic to focus more on the operational phase (Moran, Goggins, and Hajdukiewicz (2017)).

The scope of this report is to provide a CRAVEzero cost spreadsheet, implementing a comprehensive and structured methodology in order to evaluate the LCC with a particular focus on nZEBs.

METHODOLOGY ADOPTED

The first part of this report describes the approach adopted for collecting the information and the methodology for evaluating the Life Cycle Costs implemented in the CRAVEzero spreadsheet and for the evaluation of the case studies

A data collection template for the evaluation of the nZEB life-cycle costs has been developed as a starting point for the upcoming CRAVEzero LCC tool. The template is structured according to the approach provided by two main sources:

- the Standard ISO 15686-5 (Buildings and constructed assets -- Service life planning --Part 5: Life-cycle costing)
- 2. the European Code of Measurement, elaborated by the European Committee of the Construction Economists (CEEC, n.d.).

The tool PHPP (Feist et al., 2012) has been used for the energy performance analysis. This tool summarises all the information dealing with the energy-related features of the building components and services and provides a comprehensive overview of the technologies installed.

In addition, a data collection template for the evaluation of the nZEB life-cycle costs has been developed as a starting point for the upcoming CRAVEzero LCC tool. The template is structured according to the approach provided by two main sources:

- the Standard ISO 15686-5 (Buildings and constructed assets -- Service life planning --Part 5: Life-cycle costing)
- 2. the European Code of Measurement, elaborated by the European Committee of the Construction Economists (CEEC, n.d.).

The first reference provides the main principles and features of an LCC calculation, while the second one describes an EU-harmonised structure for the breakdown of the building elements, services, and processes, in order to enable a comprehensive evaluation of the building life costs. Following the ISO 15686-5, the analysis can include different phases of the life cycle, as summarised in Table 1.

LIFE CICLE PROCESSES INCLUDED COSIS					
			1. Political decision and urban de- sign phase	Non-construction cost (cost of land, fees and enabling costs, externalities)	
		Initial	2. Building design phase	Building design costs	
Whole- life		Investment	3. Construction phase	Construction and building site	
	Life- cycle cost	5. Construction phase	management costs		
cycle			4. Operation phase	Energy and ordinary maintenance	
costs		4. Operation phase	costs		
			5. Renovation phase	Repair and renovation costs	
			6. Recycling, dismantling and reuse phase	Residual value of the elements	
		T_{c}	ble 1: Phases and costs in WIC and IC	C	

LIFE CYCLE PROCESSES

INCLUDED COSTS

Table 1: Phases and costs in WLC and LCC

The data collection for the CRAVEzero spreadsheet is structured in three parts:

- 1. **General project information**: it includes the main information of a case study and its context
- 2. **Non-construction costs**: it deals with the preliminary costs for the WLC and the design phase
- Life Cycle Costs: it reports all the costs for building elements and services during construction and operation, including maintenance and energy costs.

Life Cycle cost calculation

According to the ISO 15686-5:2008, the LCC of a building is the Net Present Value (NPV), that is the sum of the discounted costs, revenue streams, and value during the phases of the selected period of the life cycle.

Accordingly, the NPV is calculated as follows:

$$X_{NPV} = \sum_{n=1}^{p} \frac{C_n}{(1+d)^n}$$

- C: cost occurred in year n;
- d: expected real discount rate per annum (assumed as 1.51%);
- n: number of years between the base date and the occurrence of the cost;
- p: period of analysis (40 years).

Energy costs

In order to provide a homogeneous and comparable estimation of the energy costs of the case studies, the evaluation is based on the calculated energy demand by using the PHPP evaluation tool (Feist et al., 2012).

In particular, for estimating both the costs and the revenues (due to the renewables installed), we consider the following contributions, in terms of final energy:

- Energy costs:
 - o Heating demand [kWh]
 - Energy demand for domestic hot water production [kWh]
 - o Cooling demand [kWh]

- Household electricity [kWh] + electricity demand for auxiliaries [kWh]
- Revenues from renewables
 - Final energy generated by a photovoltaic system
 - Final energy generated by the solar thermal system

The energy produced from renewables is considered in the energy balance as a positive contribution to the energy consumption, and the revenues from the renewable have been discounted from the energy cost. As a general assumption, we assumed a rate of increase of the electricity prices in accounting for 1.0% (calculated from Eurostat values in the CRAVEZero countries).

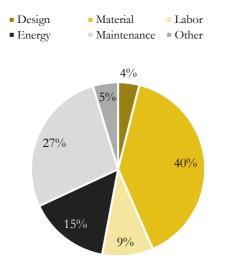
Maintenance costs

The analysis within CRAVEzero is based on standard values from EN 15459:2018 that provides yearly maintenance costs for each element, including operation, repair, and service, as a percentage of the initial construction cost. The standard provides a detailed breakdown of the costs for the HVAC, as reported in Table 2. For the passive building elements, an average yearly value accounting for 1.5% of the construction cost has been assumed for the evaluation. The value has been cross-checked with average values coming from the experience of the industry partners.

		Annual
Component	Life Span	maintenance
	(years)	(% invest-
		ment)
	adopted	adopted
Building elements	1.5	40
Air conditioning units	15	4
Control equipment	17	3
Cooling compressors	15	4
Duct system for non-	30	6
filtered air	50	0
Electric wiring	40	1
Water floor heating	40	2
Heat pumps	17	3
Heat recovery units	15	4
Meters	10	1
Pipes, stainless	30	1
Radiators	35	1,5
Solar collector	20	0,5
Tank storage for DHW	20	1

Table 2. Selected maintenance values for building services from the EN 15459:2018

Normalisation


The analysed case studies are located in different European countries, i.e. Austria, Germany, France, Italy, and Sweden, with specific characteristics in terms of climate conditions, construction, and energy market. Therefore, in order to compare the results of the case studies and to draw a general overview of the costs of the current nZEB practices, a normalization of the collected data is needed. In particular, the construction costs have been normalised considering the data from the ECC (European Construction Costs) that calculated a European construction cost index that quantifies the ratio among the construction costs of EU countries. For the climate conditions, the normalisation has been carried out considering the Heating Degree Days of the building locations. Concerning the energy process, a common value has been adopted, accounting for 0,174 €/kWh of final energy consumed.

PRESENTATION OF THE RESULTS -CASE STUDIES COMPARATIVE ANALYSIS

The second part reports an overview of the results, with the comparison of relevant indicators, costs, and performances among the case studies considering the effect of local specificities, different context and use of the buildings (i.e. normalised results).

DEMO CASE		TYPOLOGY	LOCATION
Bouygues	Green Home	Residential	Nanterre (France)
	Les Héliades	Residential	Angers (France)
	Residence Alizari	Residential	Malaunay (France)
ATP sustain	NH Tirol	Residential	Innsbruck (Austria)
Kohler&Meinzer Parkcarré		Residential	Eggenstein (Germany)
Moretti	More	Residential	Lodi (Italy)
	Isola nel Verde A	Residential	Milan (Italy)
	Isola nel Verde B	Residential	Milan (Italy)
Skanska	Solallén	Residential	Växjö (Sweden)
	Väla Gård	Office	Helsingborg (Sweden)
ATP sustain	Aspern	Office	Vienna (Austria)
	I.+R. Schertler	Office	Lauterach (Austria)

Table 3. Case studies analysed

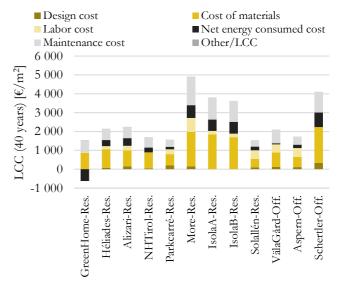


Figure 1: Life-cycle cost breakdown – average share of the phases

Figure 2 Life-cycle cost breakdown - normalized values.

Figure 1 shows an overview of the average impact of all the phases on the LCC, the investment costs for design, material labor and other initial expenditures is around 60% of the LCC, while the energy and maintenance account for around 40%.

As it was expected, the energy costs during the life cycle of a nZEB represent a minor contribution to the LCC, with an average of around 15%. Figure 2 shows the absolute values in \notin/m^2 of the LCC. It is important to point out that the contribution from the RES is accounted as a reduction of the energy cost of the overall life cycle (calculated as a balance between energy consumed and produced). In case of Greenhome, the energy reported in the chart assumes a negative value, since the energy produced is higher than the energy consumed, considering the large PV field installed.

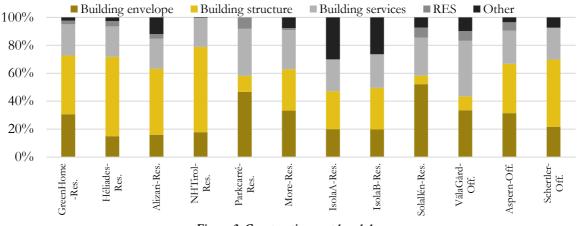


Figure 3. Construction cost breakdow

Figure 3 reports the breakdown of the cost for the building elements, highlighting the impact on the construction costs. It shows that in some cases the structural elements represent a significant contribution to the construction, according to the complexity and the dimension of the build-

CRAVEZERO SPREADSHEETS

The third part of the report presents 12 dedicated technical tables, summarising the main results and indicators calculated with the CRAVEzero spreadsheet (i.e. actual results without normalisaing. On the other hand, nZEB related technologies have a small impact on the construction costs, although in comparison to a traditional building the cost for the HVAC system and the integration of renewables is more significant.

tion). The unitary costs and energy consumptions are normalised according to the treated floor area (i.e. heated area as inserted in PHPP).

DEMO CASE 9 – SOLALLÉN – SKANSKA

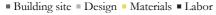
GENERAL INFORMATION

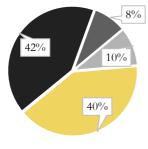
Architect: Skanska Teknik

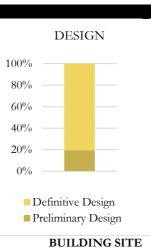
Energy concept: Net ZEB

Location: Växjö (Sweden)

Construction Date: 2015

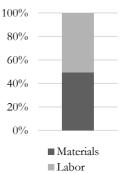

Net floor area: 1778 m²


Primary Energy Demand: 109 kWh/(m²a)


Key technologies: Well insulated and air tight, Balanced ventilation with heat recovery, Ground source heat pump, Photovoltaic panels

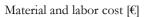
INVESTMENT COSTS

INVESTMENT COST



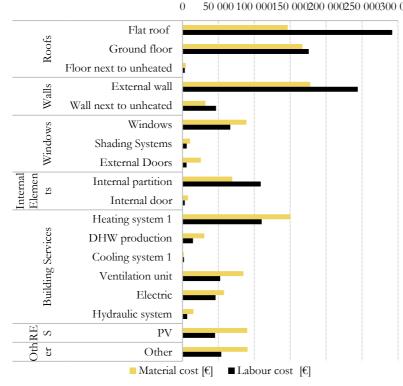
MANAGEMENT

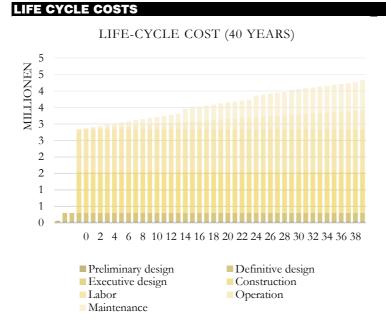
260.000 €


MATERIALS&LABOR

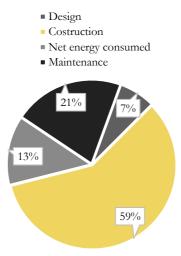
CONSTRUCTION COSTS

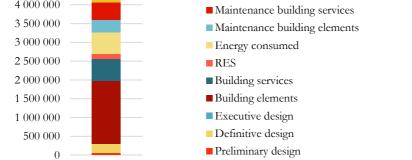
INVESTMENT COSTS

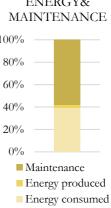

3.095.764 €


50 000 100 000150 000200 000250 000300 000

DESIGN COSTS


300.000 €


2.535.764 € Impact of nZEB technologies on the investment cost				
Construction cost [€]	2.535.764 €			
RES	5%			
HVAC	18%			
DHW	2%			
VMC	5%			
Heating	10%			
Windows	6%			
Final Energy Cons	umption			
Energy demand heating [kWh]	32.688			
Energy demand cooling [kWh]	785			
Energy demand DHW [kWh]	11.138			
Household elt. + aux. [kWh]	47.258			
Annual RES generation [kWh]	32.688			
Annual CO ₂ Emissions [kgCO ₂]	48.895			



COST DISTRIBUTION

WLCC (40)	MAINT.	MAINT./INVES.	LCC (40)	ENERGY (40)	RES/LCC	
5.548.872€	916.519€	30%	4.588.972€	576.689€	3%	
	Breakdown of	the Life Cycle Cost		ENERGY&		
4 500 000				MAINTENANCE		
4 500 000		Maintenance RES		100%		
4 000 000		Maintenance building services		10076		

		Design	Preliminary	28 €/m²	
		143 €/m ²	Definitive	115 €/m ²	
			Executive	- €/m²	
	T			Building Elements	348€/m ²
	Investment 1474 €/m ²	Construction 1208 €/m ²	Materials	MaterialsBuilding Services1593 €/m²RES	162€/m ²
	$14/4 t/10^{2}$		1593 €/m ²		43 €/m ²
				Other	
			Labour	43 €/m ²	
LCC (40)			611 €/m ²		
2185 €/m ²		Building site management	124 €/m ²		
		Energy		Heating	105€/m ²
				Cooling	3 €/m ²
				DHW	36€/m ²
	0	275 €/m ²		Household el.+ aux.	152€/m ²
	Operation 711 €/m ²	Maintenance 436 €/m ²	Produced		
	/11 €/1112		21 €/m ²		
			Envelope	156 €/m ²	
			HVAC	225 €/m ²	
			RES	43 €/m ²	
		0.1 + 12.0 / 2			

Other $13 \in /m^2$

CONCLUSIONS AND FURTHER DE-VELOPMENTS

Deliverable D2.2 describes the approach for the life cycle cost analysis of the CRAVEzero case studies, including the boundary conditions and detailed specificities of the calculation.

The survey of the case studies represents the database of information that will support the further developments of the project, dealing with the identification and the reduction of the extracosts in technologies and processes.

On the one hand, the availability of databases with actual building LCC would help to increase the reliability of the evaluations, providing useful benchmarks and references. On the other hand, one of the future key developments of the CRAVEzero spreadsheet will be the implementation of uncertainty analysis, in order to allow for a probabilistic calculation considering all the factors and boundaries affecting the LCC.

Another future development of the CRAVEzero calculation approach will be the implementation of the co-benefits of nZEBS (e.g. increased comfort, building values, health, etc.) in the economic analysis.

A comprehensive approach for evaluating LCC including uncertainties and co-benefits is strategic to enable the nZEB market uptake and will be developed in the future actions of the project

Contents

1.	Intro	oduction	1
2.	Data	a collection	2
2	2.1	Structure the information	2
3.	Ove	rview of the case studies:	6
3	.1	Description of the cases	6
3	.2	Data completion	12
4.	Metl	hodology for data elaboration	15
4	.1	Life cycle cost calculation	15
4	.2	Determination of the energy costs	15
4	.3	Maintenance costs	16
4	.4	Normalization	17
	4.4.1	Construction cost	17
	4.4.2	2 Year of construction	18
	4.4.3	3 Climate	18
	4.4.4	Energy prices	19
4	.5	Key performance indicators	19
5.	Resu	ılts	20
5	.1	Presentation of the overall LCC results	20
5	5.2	Example of the revenue evaluation	25
6.	Con	clusions and further developments	27
7.	Refe	erences	28
An	nex 1		29
Dat	asheet	ts of the case studies	29

LIST OF FIGURES

Figure 1 Life-cycle costing according to ISO 15686:2008	3
Figure 2: Data collection template sheet 1 – Project information	3
Figure 3: Data collection template sheet 2 – Whole-life cost	4
Figure 4: Data collection template sheet 3 – Life-cycle cost	5
Figure 5: Life-cycle cost breakdown – share of the phases	21
Figure 6: Life-cycle cost breakdown – normalized values	21
Figure 7: Life-cycle cost breakdown – average	21
Figure 8: Design cost / LCC	
Figure 9: Energy cost / LCC	22
Figure 10. Correlation between HVAC costs and maintenance costs	22
Figure 11. Correlation between building elements costs and shape factor	22
Figure 12: Investment cost vs. maintenance cost	23

Figure 13: Construction cost breakdown.	23
Figure 14: Correlation between energy cost and U-values.	24
Figure 15: Correlation between heating demand and U-values.	24
Figure 16: Envelope and HVAC costs vs. energy consumed.	25
Figure 17. RES costs vs. energy consumed	25
Figure 18. Revenue streams for case study Parkcarrè	26

LIST OF TABLES

Table 1: Phases and costs in WLC and LCC	2
Table 2: Phases and costs in WLC and LCC	2
Table 3: Project information available for the case studies.	
Table 4: Whole-life cycle costs (design, building site management, and non-construction costs)	available for
the case studies	13
Table 5: Construction costs available for the case studies	13
Table 6: Labor costs available for the case studies.	14
Table 7. Electricity prices for households in the EU union (2010-2017)	16
Table 8: Selected maintenance values for building services from the EN 15459:2018	17
Table 9: Construction cost index for CRAVEzero countries	
Table 10: Demo cases year of construction.	
Table 11: Heating degree days for the locations of the demo cases (Source: Ecofys)	
Table 12: Energy prices for the demo cases for heating and domestic hot water.	19
Table 13: Rated key performance indicators	19
Table 14: Case studies analysed	

1.INTRODUCTION

The EPBD 2020/31/EU [1] established that all new buildings have to reach by the end of 2020 the nZEB target set by the Member States (MS). Nevertheless, there are still many barriers affecting the update process of the construction markets towards nZEB. In fact, even though the MS established minimum nZEB requirements according to the cost-optimal principles indicated by the EPBD, the extra-costs of investment for nZEB technologies is rarely accepted by stakeholders. This is mainly because the investor usually adopts a reduced timehorizon for evaluating the cost-optimality of an investment, and this strongly affects the building design and the reachable targets, as stated in [2]. CRAVEzero aims at identifying the extra-costs of nZEB in a life cycle perspective in order to propose solutions for cost reduction or cost shifting.

In fact, in order to reach the nZEB targets while keeping investments sustainable for the users, it is strategic to focus more on the operational phase [3]. In this regard, introducing the Life Cycle Cost (LCC) assessment as a driver in the design phase is one of the key points to foster the nZEB market uptake. A structured methodology for assessing building LCC, with benchmarks, exemplary cases and standard values is needed. D2.2 represents a starting point for developing a structured approach for LCC evaluations, including data collection templates, references and standard costs to be adopted for preliminary evaluations. In fact, one of the main drawbacks of the LCC analysis is the high level of uncertainty affecting the evaluation of the costs during the building life cycle[4]. Collecting a large amount of information on LCC costs of exemplary buildings would allow to reduce uncertainties, provide reliable figures of costs and performances of nZEBs and make more reliable estimates during the design phase.

The scope of this task is to address these drawbacks and barriers, by providing a CRAVEzero cost spreadsheet, implementing a comprehensive and structured methodology in order to evaluate the LCC with a special focus on nZEBs. The spreadsheet has been used for analyzing a set of exemplary nZEBs representing current best practices across Europe. The gathered information was fed into a database on costs and performances. The database forms the basis for the future developments of the project.

The first part of this report describes the approach adopted for collecting the information and the methodology for evaluating the Life Cycle Costs implemented in the CRAVEzero spreadsheet.

This approach was used to collect and analyse data from 12 case studies. The information has been provided by the companies Bouygues, Skanska, Köhler & Meinzer, ATP-sustain, Moretti, that participated as designers, general contractors or technology providers in the building construction process.

The case studies have been analyzed to identify the nZEB related cost of the building elements during the life cycle phases, starting from the design to the construction and operation phase, including energy and maintenance cost.

The second part reports an overview of the results, with the comparison of relevant indicators, costs, and performances among the case studies considering the effect of local specificities, different context and use of the buildings (i.e. normalised results).

The third part of the report presents 12 dedicated technical tables, summarising the main results and indicators calculated with the CRAVEzero spread-sheet (i.e. actual results).

These technical tables and the database of the case studies represent the basis of the project CRAVEzero. On the one hand, they provide a comprehensive overview of exemplary nZEBs, with a clear methodology to be replicated. On the other hand, they represent the source of data and information for defining the baseline of the current costs and performance of nZEBs, as a base for the further activities of the project.

2.DATA COLLECTION

2.1 STRUCTURE THE INFORMATION

The first step of the analysis was to prepare a data collection template in order to gather all the significant information dealing with the costs and performances of technologies and processes during the building lifecycle of the analyzed case studies. In particular, it has been decided to separate the performance analysis from the cost evaluation. The tool PHPP [5] has been used for the energy performance analysis. This tool summarises all the information dealing with the energyrelated features of the building components and services and provides a comprehensive overview of the technologies installed.

In addition, a data collection template for the evaluation of the nZEB life-cycle costs has been developed as a starting point for the upcoming CRAVEzero LCC tool. The template is structured according to the approach provided by two main sources:

- the Standard ISO 15686-5 (Buildings and constructed assets -- Service life planning --Part 5: Life-cycle costing)
- the European Code of Measurement, elaborated by the European Committee of the Construction Economists (CEEC, n.d.)[6].

The first reference provides the main principles and features of an LCC calculation, while the second one describes an EU-harmonised structure for the breakdown of the building elements, services, and processes, in order to enable a comprehensive evaluation of the building life costs.

In particular, following the ISO 15686-5, the analysis can include different phases of the life cycle, as summarised in Table 2. Whole Life Costing (WLC) includes the initial phase dealing with political decision-making and urban design, which influence the cost of land, as well as the fees needed for allowing the realisation of the building from the technical and administrative point of view.

The Life Cycle Cost (LCC) index is focused on the design, the construction, and the operation, and includes the costs until the end of life, where the residual values of the element are taken into account. Within this report and for the case study analysis, also the "Initial Investment", is considered, constituted by costs for design and construction of the building.

			1. Political decision and urban de- sign phase	Non-construction cost (cost of land, fees and enabling costs, externalities)
Whole-		Initial	2. Building design phase	Building design costs
life	Investment		3. Construction phase	Construction and building site
	Life-		5. Construction phase	management costs
cycle costs	-		4. Operation phase	Energy and ordinary maintenance
00818	cycle cost		4. Operation phase	costs
	COST		5. Renovation phase	Repair and renovation costs
			6. Recycling, dismantling and reuse	Residual value of the elements
		phase		Residual value of the elements
		Ta	ble 2: Phases and costs in WLC and LCO	C

LIFE CYCLE PROCESSES

INCLUDED COSTS

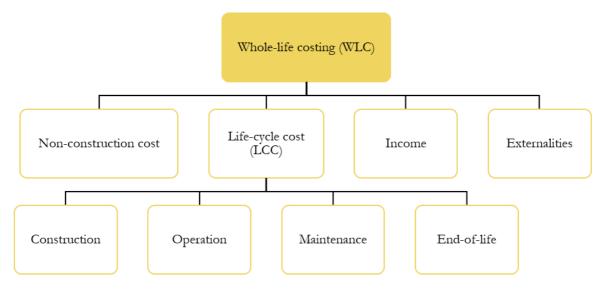


Figure 1 Life-cycle costing according to ISO 15686:2008.

Figure 1 summarizes the definition of whole-life cost (WLC) and life-cycle cost (LCC) according to the norm ISO 15686:2008. The WLC evaluation also includes revenues generated by the building, e.g. rental income, energy produced and delivered to the grid, etc.

At this stage, the end-of-life cost is not included in the evaluation since, like for the most of new and existing buildings, there is no availability of structured and relevant data from the case studies. The data collection for the CRAVEzero spreadsheet is structured in three parts:

- 1. **General project information**: it includes the main information of a case study and its context
- 2. **Non-construction costs**: it deals with the preliminary costs for the WLC and the design phase
- 3. Life Cycle Costs: it reports all the costs for building elements and services during construction and operation

CELL LEGEND	Cell to be filled-in with input values	Cell to be filled-in with text - comments, references	Automatic calculation (intermediate results)	Automatic calculation (final results)
PROJECT DATA				
Name	Hauptstr. 131	Parkcarré		
Nation/Region/city	Hauptstr. 131	Parkcarré		
Location	Germany	Baden-Württember	°6	
Author	Gerold Köhler	Thomas Stöcker		
Building Use/Typology	Apartment house			
Construction year	2.015		year of the end of th	he building construction (reference year for the LCC analysis)
BUILDING SURFACES AND VOLUMES				
Gross floor area (GFA)	1.286	m ²	is the total heated f	loor area of the building measured to the external face of the external walls
Net floor area (NFA)	1.109	m ²	is the floor heated a	area of the building measured to the internal face of the external walls without lift, columns and ducts.
Gross Volume	3.889	m ³	is the total heated v	volume of the building measured to the external face of the external walls
Net Volume	3.194	m ³	is the total heated v	volume of the building measured to the internal face of the external walls without lift, columns and ducts.
UNHEATED AREAS				
Gross floor area (GFA)	225	m ²	is the total unheate	d floor area of the building measured to the external face of the external walls
Net floor area (NFA)	165	m²	is the floor unheate	d area of the building measured to the internal face of the external walls without lift, columns and ducts.
Gross Volume	629	m ³	is the total unheate	d volume of the building measured to the external face of the external walls
Net Volume	396	m ³	is the total unheate	d volume of the building measured to the internal face of the external walls without lift, columns and ducts.
OTHER AREAS				
Balconies, Terraces, Winter gardens, porches_	159	m²	secondary surface	ŝ

General Project Information / Energy Costs (CRAVEzero cost Spreadsheet based on ISO 15686 and EconCalc - for internal use only)

Figure 2: Data collection template sheet 1 - Project information

Figure 2 shows a screenshot of the "General project information" template, aimed at collecting the main information of the building (property, use, year of construction), the geometric data of

the building (gross/net, heated/unheated surfaces and volumes), the possible incomes generated by the rent, the energy prices to be adopted for the evaluation and operation costs.

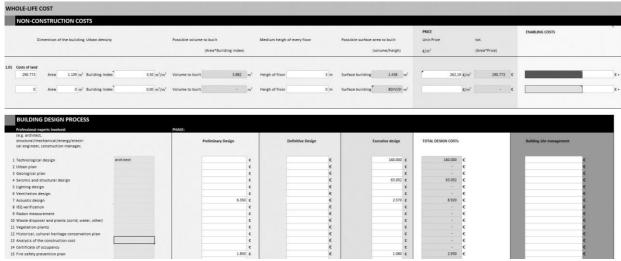


Figure 3: Data collection template sheet 2 - Whole-life cost

Figure 3 displays an overview of the second part of the spreadsheet, where the non-construction costs are collected. In particular, there is a breakdown of the costs dealing with the preliminary phases (i.e. enabling costs and administrative fees), and the cost of land and the finance costs (i.e. the charges needed for the bank loan for the initial investment). Moreover, this sheet includes also the costs for the design process, structured in preliminary, definitive and executive phase and for the management of the construction site.

Figure 4 shows the part of the template to be populated with costs for construction and

maintenance of the building elements and services. This part is organized according to the building structure, with the breakdown of the building elements (roofs, walls, windows, floors, etc.), services (heating, cooling, ventilation system, etc.) and renewables installed (photovoltaic, solar thermal, etc.). For each building element, the sheet allows for the collection of the costs for materials and labor during the construction phase, and the maintenance during the operation. Each element can be analyzed with a higher level of detail, separating each layer of the construction and each subsystem of the plant.

Life Cyc	cle Cost			COSTRUCTIO	DN CC	OSTS					
CONSTRU	JCTION COSTS (Based on ISO15686)			MATERIALS						тот.	
				AGGREGATED	or					£	
				~~	00000000			000000000000			Tot. 85.508,511
A1 A1.01	Roofs Flat roof										05.508,511
A1.02	Pitched roof - Ceiling next to air (outside)					•					
A2	Ceilings										28.000,00 i
A2.01	Ceiling next to unheated area										
A2.02	Ceiling next to ground (outside)										
A3	Floors										25.000,001
A3.01 A3.02	Floor next to ground (outside) Floor next to air (outside)										
A3.02	Floor next to unheated area (like garage)										
A4	Walls										116.544,66 1
A4.01	External wall										
A4.02	Wall next to unheated area (garage)										
A4.03	Wall next to ground (outside)										
A5	Windows										95.491,60 I
A6	Shading Systems										- 1
A7 A8	External Doors Internal elements (next to heated areas)										- 1 50.000,001
A8.1	Internal partition										50.000,001
A8.2	Internal floor/ceiling										
A8.3	Internal door										
A9	Structural elements										- 1
A9.01	Foundations										
A9.02	Raising structure										
A10	Other elements										36.000,001
A10.01	Balcony Banisters										
A10.02 A10.03											
A10.03	Stair										
A10.04											
A10.05											
	BUILDING SERVICES										Tot.
B1	Heating System										67.436,001
B1.01	Heating system 1										
B1.01	Heating generation	Element	n.		or (m2 ·	lîn.)=	- I =tol		
B1.01	Emission system	Element	· n.		or (m2 *			- I =tol		L
B1.01	Emission system	Element	n.	1	or (m2 *	I/m2)=	- I =tol	-	l .

Figure 4: Data collection template sheet 3 – Life-cycle cost

3.OVERVIEW OF THE CASE STUDIES:

3.1 DESCRIPTION OF THE CASES

As one of the backbones of the project, 12 case studies have been selected and analyzed in terms of Life Cycle Costs, according to the framework described in this deliverable. In particular, the Industry Partners provided information on 12 existing reference buildings, considered as representative of the current best practices in the construction of new nZEBs with different functions and context. The Industry partners participated in the design and/or the construction or operational phase of the buildings, and thus have access to detailed relevant data. These case studies include both residential, and office buildings and are located in the CRAVEZero countries: Italy, France, Germany, Sweden and Austria. The following sections report a brief overview of the main features of the case studies.

CASE 1: "Green Home" - BOUYGUES (GreenHome-Res.)

Green Home is a plus-energy residential building located in Nanterre, France. The special feature of this building is that it operates without heating and cooling systems. This building has very low energy needs (80% less than a conventional one), thanks to a bioclimatic approach and a wellinsulated envelope (external insulation, triple glazing, and thermal bridge optimization) close to passive house standard. As a result, a double flux ventilation system with 95% heat recovery is enough to meet almost 100% of the heating needs of the apartments. No heating system has

General information

- Owner: Condominium ownership
- Architect: Atelier Zündel Cristea
- Location: Nanterre (France)
- Year of construction: 2016
- Net floor area: 9267 m²

Key technologies

- Triple-glazed windows
- Decentralized ventilation with 96% of heat recovery
- Heat recovery on grey water (with a waterto-water heat pump)

been implemented, except for a small electric resistance in the ventilation system, used when the outside temperature is very low. A centralized heat pump with very high efficiency (performance coefficient equal to 7) uses the heat recovery of grey water to produce domestic hot water. Green Home was designed to consume less than 23 kWh/m² primary energy each year for heating, cooling, ventilation, lighting and domestic hot water, which is almost 3 times less than what is required by the RT2012 (the French thermal regulation for buildings).

CASE 2: "Les Héliades" - BOUYGUES (Héliades-Res.)

The Héliades residence, where 57 families have been installed since March 2017, is defined as a Positive Energy Building (BEPOS). It was designed by the architect Barré-Lambot and Bouygues Bâtiment Grand Ouest, with the goal to combine the comfort of the inhabitants and control of energy. The building, with high shape

General information

- Owner: Podeliha
- Architect: Barré Lambot
- Energy concept: ZEB (heating, cooling, ventilation, lighting, and SHW)
- Location: Angers (France)
- Year of construction: 2015
- Net floor area: 4590 m²

Key technologies

- Well insulated and airtight
- Balanced ventilation with heat recovery
- Ground source heat pump
- Photovoltaic panels

compactness, is connected to the urban heat network powered with biomass for the production of heating and domestic hot water, complemented by solar thermal panels and photovoltaic panels installed on the roof. Solar gains are favoured by largely glazed façade, mainly facing south.

CASE 3: "Residence Alizari" - BOUYGUES (Alizari-Res.)

Labelled Passivhaus and Promotelec RT 2012-20%, this residence has 31 apartments and 1 studio. The design of the project was oriented to meet a high standard of energy performance, relying on the compactness of buildings, the control of solar inputs and of the orientation and the management of renewable energies. Electricity generation via photovoltaic panels, heating sys-

General information

- Owner: Habitat 76
- Architect: Atelier des Deux Anges
- Energy concept: ZEB (heating, cooling, ventilation, lighting, and DHW) and Passivhaus
- Location: Malaunay (France)
- Year of construction: 2015
- Net floor area: 2776 m²

Key technologies

- High-performance envelope (triple glazing, internal and external insulation)
- Balanced ventilation with heat recovery
- Centralized wood boiler
- Photovoltaics

tem with ventilation, with a biomass boiler and reinforced thermal insulation.

Furthermore, a large part of the spaces and services are shared among the different residents (local bicycles and strollers, optical fibre, local compost).

Residential common laundry and a guest bedroom are also integrated into the new building.

CASE 4: "NH - Tirol" - ATP sustain (NHTirol-Res.)

This is one of the largest residential complexes built according to the passive house approach in Europe. Heating is supplied by a pellet boiler and a gas condensing boiler, whereby approx. 80% of the annual energy requirement (without consider-

General information

- Owner: Neue Heimat Tirol
- Architect: Architekturwerkstatt DIN A4
- Energy concept: Cogeneration unit wood, solar thermal energy (DHW) and ventilation with heat recovery
- Location: Innsbruck (Austria)
- Year of construction: 2008-2009
- Net floor area: 44959 m²

Key technologies

• Centralized pellet boiler

ation of the solar system) is covered by the pellet boiler- Due to the low heating demand, only the outer surfaces (edge zones) are heated by means of a floor heating system.

CASE 5: "Parkcarré" – Köhler & Meinzer (Parkcarré-Res.)

The case study is a multi-family home, with 4 floors, 10 dwellings, within a quarter of 6 buildings, each with 4 floors and overall 66 dwellings. This building consumes 40% less than national standards requirements. The envelope is highly insulated and airtight. Decentralised ventilation systems (2 for each dwelling) with heat recovery have been installed. DHW, heating and electric energy of all dwellings are supplied by a gas pow-

General information

- Owner: Owner's Association
- Architect: Alex Stern/Gerold Köhler
- Energy concept: Contracting model for the quarter energy supply (DHW, heating, and electricity) for all buildings with a local gas boiler and a PVsystem
- Location: Eggenstein (Germany)
- Construction date: 2014
- Net floor area: 1109 m²

Key technologies

- High level of thermal insulation
- Best quality heat-bridges optimization and an airtight envelope
- Decentralized ventilation system with heat recovery (2 system/apartment)

er and heat plant and a PV system on each building. Moreover, the social and economic sustainability has been taken into account by the project. On the one hand, one of the main objectives in developing this multi-family house was to create a type of building which can meet different demands. On the other hand, the designers focused on the cost-effectiveness of the construction to guarantee affordable costs of the dwellings. CASE 6: "More" - Moretti (More-Res.)

Groppi represents one of the typologies of prefabricated single-family house produced by Moretti. The envelope and all the equipment have been designed with the aim to achieve high performances. The thermal equipment consists of an air-water heat pump, distribution through a floor heating system, balanced ventilation with heat

General information

- Owner: Groppi-Tacchinardi
- Architect: Valentina Moretti
- Energy concept: Heat pump and condensing boiler, solar heating panel
- Location: Lodi (Italy)
- Construction Date: 2014
- Net floor area: 128 m²

Key technologies

- Precast component
- Compact model home
- Central core
- Flexible and modular

recovery, electric system automation. In summer, a natural chimney activates air circulation inside the house, thus ensuring natural ventilation. In addition, the installation of special selective and low emissivity glasses ensures a low cooling demand.

CASE 7-8: "Isola Nel Verde A + B" - Moretti (IsolaA-Res./IsolaB-Res.)

General information

- Owner: Isola nel Verde s.r.l.
- Architect: Studio Associato Eureka
- Energy concept: cogeneration system, geothermal heat pump, photovoltaic and solar thermal panels
- Location: Milan (Italy)
- Construction Date: 2012
- Net floor area: 1409 (A)+1745 (B) m²

Key technologies

- Cogeneration system
- Geothermal energy
- Green roof

with the integration of photovoltaic and solar thermal panels.

The complex has two buildings, A and B that are considered separately in the LCC analysis, for the different configuration. The apartments are heated by radiant floor panels, and the conditioning is supplied by a fan coil plant. The buildings of "*Isola nel Verde*" present excellent acoustic and thermal insulation.

Moreover, the insulated green roof reduces the cooling demand. The energy is supplied by a geothermal heat pump for heating and cooling, CASE 9: "Solallén" – SKANSKA (Solallén-Res.)

Well-insulated buildings, using 50% less energy than Swedish code requirements, an energy demand of 30 kWh/m² together with a photovoltaic system and geothermal heating and cooling systems have led to a net zero primary energy balance. During construction, 37% of embodied carbon savings was achieved, using foundation materials efficiently, minimizing construction

General information

- Owner: Brf Solallén (Tenant owned)
- Architect: Skanska Teknik
- Energy concept: Net ZEB
- Location: Växjö (Sweden)
- Construction Date: 2015
- Net floor area: 1778 m²

Key technologies:

- Well insulated and airtight
- Balanced ventilation with heat recovery
- Ground source heat pump
- Photovoltaic panels

equipment time on site and sourcing local timber for the structural frames and façades material. Zero hazardous and unsustainable materials were used, all used materials have been approved by Svanen Nordic ecolabel. The buildings use 45% less water than typical newly built Swedish homes and have integrated photovoltaic systems.

CASE 10: "Väla Gård" – SKANSKA (VälaGård-Off.)

Väla Gård is composed of two buildings used as an office. A prefabricated 120 mm concrete wall with 200 mm graphite EPS is used. Heat and hot tap water are produced using a geothermal heat pump that can also be used for cooling. A demand-controlled ventilation system is used to ensure air quality. The building was constructed

General information

- Owner: Skanska Sverige AB
- Architect: Tengbom
- Energy concept: Net ZEB
- Location: Helsingborg (Sweden)
- Construction Date: 2012
- Net floor area: 1670 m²

Key technologies

- Well insulated and air tight
- Balanced ventilation with heat recovery
- Ground source heat pump
- Photovoltaic panels

with a high level of insulation, and it is equipped with solar cells and ground-source heating. As a consequence of all these green initiatives the building has been certified under Leadership in Energy and Environmental Design (LEED) at the highest level, LEED Platinum.

CASE 11: "Aspern IQ" - ATP sustain (Aspern-Off.)

Aspern IQ is located in Vienna's newly developed urban lakeside area "Aspern" - Austria's largest urban development project and one of the largest in Europe. The building was designed in line with Plus Energy standards and is conceived as a flagship project which shows the approach to create a Plus Energy building adapted to locally available materials and which offers the highest possible level of user comfort while meeting the demands of sustainability. The Technology Centre received a maximum number of points in its klima-aktiv

General information

- Owner: City of Vienna
- Architect: ATP Wien
- Energy concept: Renewable power, environmental heat, and waste heat
- Location: Vienna (Austria)
- Year of construction: 2012
- Net floor area: 8817 m²

Key technologies

- Groundwater heat pump
- Photovoltaics
- Small wind turbine

declaration and had also been awarded an ÖGNB Building Quality Certificate. The energy demand of the building has actively been lowered by measures in the design of the building form (compactness), orientation and envelope. A balanced glazing percentage, the highly insulated thermal envelope in passive house standard, optimized details for reduced thermal bridges and an airtight envelope (Blower Door Test=0,4 1/h) beating the Austrian building regulation OIB 6 by 55%.

CASE 12: "I.+R. Schertler" - ATP sustain (Schertler-Off.)

The new corporate headquarters of the i+R Group were designed with a focus on the aspects of greater comfort, natural materials, and renewable energy. The building has been designed to obtain the LEED Certification. The building is

General information

- Owner: I.+R. Schertler Alge GmbH
- Architect: Dietrich Untertrifaller Architekten
- Location: Lauterach (Austria)
- Year of construction: 2011-2013
- Net floor area: 2759 m²

Key technologies

• Reversible geothermal heat pump

notable for its high comfort levels, high-quality daylight, renewable energies (heat pumps, geothermal heat, and photovoltaic plant), compact building form, recycled materials and the use of timber as a natural material.

3.2 DATA COMPLETION

The collection of the information of the case studies has been carried out through the template described in Section 2. It was filled out by the CRAVEZero industry partners with the support of the research partners. Since the industry partners dealt with different phases of the Life Cycle of the analyzed case studies (e.g. design, construction, etc.), the availability of data was not in compliance with the most detailed level requested by the template for all the phases. Therefore, the template also allows for including the aggregated costs for each building element. In addition, to check the completion of the costs inserted by the partners for the construction phase, the template includes a consistency check with the actual total construction costs.

Table 3, Table 4, Table 5 and Table 6 summarize the level of completion of the case study in the different sections of the template.

PROJECT INFORMATION

		Project data	Building geometry	Building cost	Income	Viewing perspective	Energy price
	Green Home	х	Х	х	-	-	-
Bouygues	Les Héliades	х	х	Х	-	-	х
	Residence Alizari	х	х	Х	-	-	-
ATP sustain	NH - Tirol	х	Х	Х	х	-	-
Köhler &Meinzer	Parkcarré	х	X	Х	Х	X	Х
	More	х	х	Х	-	х	х
Moretti	Isola Nel Verde A	х	х	Х	-	-	-
	Isola Nel Verde B	х	Х	Х	-	Х	-
C1 1	Solallén	х	Х	х	-	-	-
Skanska	Väla Gård	х	Х	Х	-	-	-
ATD	Aspern	х	Х	х	-	-	х
ATP sustain	I.+R. Schertler	х	X	х	-	-	х

CASE STUDIES

Table 3: Project information available for the case studies.

In particular, Table 3 reports the overview of the project information sheet, which collects general data, such as building surface and volumes, overall building costs, revenues and energy prices. It is possible to point out a significant lack of data about income sources (only two cases have available info). This will not permit to carry out general considerations about the revenue streams in the life-cycle of the building (Section 5.2 reports an example of analysis including revenues and incomes in the building LCC for Parkarrè).

Moreover, most of the partners did not fill in the energy prices (since they are not dealing with the building operation and are not aware of the energy costs). Missing energy prices have been taken from the Eurostat database. Table 4 reports the information included in the second sheet of the template "WLC" that collects data about wholelife costs, such as non-construction costs, design and building site management costs. Concerning the design cost, the availability of data is quite good while there is no detailed information for each level of design (i.e. preliminary, definitive, executive). The cost of this phase is always available except for the cases Isola nel Verde and Green Home. On the other hand, only 27% of the requested data have been included in nonconstruction costs, and none of the partners reported on finance costs.

CASE STUDIES DESIGN COSTS BSM

NON-CONSTRUCTION COSTS

	PD	DD	ED		Cost of Land	Price	Enabling costs	Planning fees	User support costs	Finance costs
Green Home	-	-	-	х	-	-	-	-	-	-
Les Héliades	х	Х	Х	х	-	-	-	-	х	-
Residence Alizari	x	х	х	х	-	_	Х	-	-	-
Aspern	x	-	-	-	х	х	X	Х	-	-
I.+R. Schertler	х	х	Х	Х	-	-	х	-	-	X
NH - Tirol	-	х	-	х	х	-	-	-	-	-
Parkcarré	х	-	х	-	х	х	-	Х	-	-
More	-	х	х	-	-	-	-	X	-	-
Isola Nel Verde A	-	-	-	-	_	-	х	-	_	-
Isola Nel Verde B	-	-	-	-	_	-	-	-	-	-
Solallén	х	х	-	х	Х	х	х	х	-	_
Väla Gård	X	х	-	X	х	-	X	X	_	_
Table 4: Whole-life	cycle co	osts (desi	ign, buil	ding site	managen	nent, and	l non-constru	ction costs)	available for	the case

studies.

Table 5 is the third sheet, "LCC", collects construction and labor costs for the demo cases. In particular, the template was created for collecting both material and labor costs. Considering the availability of the information for the case studies, when the breakdown of labor cost was not available, the partners included the overall values in the construction costs data sheet.

It showed that constructions costs related to building elements are widely available, whereas those related to building services present a more significant lack of data. The cost categories are here indicated with letters, from A1 to E. Those correspond respectively to costs of roofs (A1), ceilings (A2), floors (A3), walls (A4), windows (A5), shading systems (A6), external doors (A7), internal elements (A8), structural elements (A9), other elements (A10), heating system (B1), domestic hot water production (B2), cooling system (B3), mechanical ventilation system (B4), electric (B5), hydraulic system (B6), renewable energy sources (C), other installations and equipment (D) and site and external works (E).

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	B5	B6	С	D	Е
Green Home	х	-	-	х	х	х	-	х	х	х	-	х	-	х	х	х	х	х	х
Les Héliades	х	-	Х	х	х	х	х	х	-	х	х	х	х	х	х	х	х	х	х
Residence Alizari	х	-	-	х	х	х	-	х	х	х	х	-	-	х	х	х	х	-	х
Aspern	х	х	х	х	х	х	х	х	х	х	х	х	х	х	-	-	х	х	-
I.+R. Schertler	х	-	-	х	х	х	х	х	х	х	х	х	-	-	х	-	-	х	х
NH - Tirol	х	-	-	х	х	х	-	х	х	х	х	-	-	-	х	х	-	-	х
Parkcarré	Х	Х	Х	х	Х	-	-	Х	-	х	Х	Х	-	-	Х	Х	-	-	-
More	х	-	х	х	х	х	-	х	х	х	х	-	-	х	х	х	х	-	х
Isola Nel Verde A	х	-	х	х	х	х	х	х	х	х	х	-	-	-	х	-	-	-	х
Isola Nel Verde B	х	-	х	х	х	х	х	х	х	х	х	-	-	-	х	-	-	-	х
Solallén	х	-	х	х	х	х	х	х	-	-	х	х	х	х	х	х	х	х	-
Väla Gård	х	х	х	х	х	х	х	х	-	х	х	х	-	х	х	х	х	х	-

COSTRUCTION COSTS

Table 5: Construction costs available for the case studies.

Table 6 highlights the availability of information dealing with the labor costs for the installation of the components. As it can be noticed, the comprehensive LCC overview of the case studies is

not complete, and only a few cases were described with the full level of detail set-up for the analysis.

CASE STUDIES

LABOR COSTS

		A	A	A	A	A	А	A	A	А	A1	B	B	B	B	В	В	С	D	Е
	Green Home	-	2	3	4	-	6 x	7 -	-	9 x	0	-	2 x	3	4 x	5	-	х	-	-
Bouygues	Les Héliades	x	-	х	х	х	х	х	х	-	-	-	-	-	-	-	-	-	-	-
	Residence Alizari	-	-	-	x	-	-	-	х	-	-	-	-	-	х	-	-	-	-	-
ATP sustain	NH - Tirol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Köhler &Meinzer	Parkcarré	х	х	х	х	-	-	-	х	-	-	-	-	-	-	-	-	-	-	-
	More	x	-	х	х	-	-	-	х	-	-	-	-	-	-	-	-	-	-	-
Moretti	Isola Nel Verde A	x	-	х	х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Isola Nel Verde B	x	-	х	х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NI 1	Solallén	x	-	х	х	х	х	х	х	-	-	х	х	х	х	х	х	х	х	-
Skanska	Väla Gård	x	х	х	х	х	х	х	х	-	х	х	х	-	х	х	х	x	х	-
\TP	Aspern	х	х	х	х	-	-	-	х	-	-	-	-	-	-	-	-	-	-	-
ATP sustain	I.+R. Schertler	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

bor costs available for the case studies.

Finally, after a preliminary round of data collection, the analysis of the maintenance costs has been based on literature information. In fact, since the buildings are quite new, it is not possible to report actual maintenance costs, and the partners have not carried out this evaluation during the design phase. In this regard, it has been decided to include the maintenance costs calculated with a common approach, as indicated in the Standard ISO 15459 that reports the maintenance for each element as a percentage of the construction costs.

In addition to the data collection template about the costs, the partners were requested to prepare a PHPP file that includes all the information dealing with the energy performance of a building. In this case, the data reported by the partners complete all the PHPP files. are in

4.METHODOLOGY FOR DATA ELABORATION

4.1 LIFE CYCLE COST CALCULATION

The following sections describe the procedure followed for the data elaboration and the calculation of the life cycle costs applied in the case studies.

In particular, the approach is based on the standard ISO 15686-5:2008. This standard provides a structured methodology for calculating LCC of buildings, setting the general principles, phases, and assumptions of the evaluation.

In addition, we considered the building elements breakdown as indicated in the European Code of Measurement, a document elaborated by the European Committee of the Construction Economists (CEEC, n.d.), which provides a standard for the sub-division of costs, in order to make LCC analyses comparable at EU level.

Following the framework of ISO 15686-5:2008, the first step in the calculation of the LCC is to set the time period, according to the purpose of the analysis. The standard indicates that the largest period to be selected is 100 years. On the one hand, shorter periods allow more reliable assessments, since the time-uncertainties are less affecting. On the other hand, longer periods, while having more uncertainties in the results, allow for more comprehensive evaluations, including the maintenance costs for a significant time frame. As stated by Dwaikat and Ali [7] "the International standard ISO 15686-5:2008 recommends that the estimated service life of a building should not be less than its design life". Furthermore, [8] suggested an analysis period between 25 and 40 years, since the present value of future costs, which arise after 40 years may be not consistent because of a large number of uncertainties. Therefore, for the purposes of the project, a period of 40 years has been selected.

According to the ISO 15686-5:2008, the LCC of a building is the Net Present Value (NPV), that is

the sum of the discounted costs, revenue streams, and value during the phases of the selected period of the life cycle.

Accordingly, the NPV is calculated as follows:

$$X_{NPV} = \sum_{n=1}^{p} \frac{C_n}{(1+d)^n}$$

- C: cost occurred in year n;
- d: expected real discount rate per annum;
- n: number of years between the base date and the occurrence of the cost;
- p: a period of analysis.

The discount rate is one of the most significant parameters to be considered in the LCC. Within CRAVEzero, as a general boundary, a common value for all the case studies has been adopted. The selected value is taken from FRED Economic Database (https://fred.stlouisfed.org/), which provides an interest rate of 1.51%.

Moreover, costs are grouped according to the phases of the life cycle: design, construction, building site management, operation, and maintenance. In the case of WLC, also cost of land and the non-construction costs have been included. Concerning design and construction costs, the partners delivered the data and information according to the template described in Section 2. For the estimation of energy and maintenance costs, a set of assumptions have been set-up and described in the following sections.

The following sections report the approach adopted for estimating energy and maintenance costs in the life cycle.

4.2 DETERMINATION OF THE ENERGY COSTS

In order to provide a homogeneous and comparable estimation of the energy costs of the case studies, since the official bills were not available in most of the cases, the evaluation is based on the calculated energy demand. In particular, the energy performance analysis has been carried out by using the PHPP evaluation tool [5]. PHPP tool allows for implementing all the data dealing with the energy behaviour of a building, including the features of the envelope, HVAC system and renewables installed.

In particular, for estimating both the costs and the revenues (due to the renewables installed), we consider the following contributions, in terms of final energy:

- Energy costs:
 - Heating demand [kWh]
 - Energy demand for domestic hot water production [kWh]
 - o Cooling demand [kWh]
 - Household electricity [kWh] + electricity demand for auxiliaries [kWh]
- Revenues from renewables
 - Final energy generated by a photovoltaic system
 - Final energy generated by the solar thermal system

The energy produced from renewables is considered in the energy balance as a positive contribution to the energy consumption, and the revenues from the renewable have been discounted from the energy cost. As highlighted in Section 3.2, the energy prices have been assumed from Eurostat [9], considering the average values from 2010 to 2017 (Table 7). Most of the case studies are supplied by electricity since the most common technology adopted is the heat pump. Nevertheless, for other energy fuels, the same approach for defining the costs has been adopted.

As a general assumption, for the evaluations described in this report, a common value for considering the increase in the energy price has been adopted. According to the data reported in Table 7 (Eurostat), the inflation of electricity prices in CRAVEzero countries from 2010 to 2017 amounts to 1.0%, and this value is used in the LCC evaluation.

YEAR	AUS	TRIA	GERM	MANY	IT	ALY	FRA	NCE	SWE	DEN	Average CRAVEZero
	c€/k Wh	In- crease	Increase								
2010 S1	19.67		23.75		19,65		12,83		18.39		
2010 S2	19.30	-1.9%	24.38	2.7%	19.2	-2.3%	13.5	5.2%	19.58	6.5%	1.8%
2011 S1	19.86	2.9%	25.28	3.7%	19.87	3.5%	13.83	2.4%	20.92	6.8%	4.0%
2011 S2	19.65	-1.1%	25.31	0.1%	20.65	3.9%	14.22	2.8%	20.44	-2.3%	0.5%
2012 S1	19.75	0.5%	25.95	2.5%	21.23	2.8%	13.92	-2.1%	20.27	-0.8%	0.8%
2012 S2	20.24	2.5%	26.76	3.1%	22.97	8.2%	15.01	7.8%	20.83	2.8%	4.6%
2013 S1	20.82	2.9%	29.19	9.1%	22.92	-0.2%	15.24	1.5%	21.01	0.9%	3.2%
2013 S2	20.18	-3.1%	29.21	0.1%	23.23	1.4%	15.96	4.7%	20.46	-2.6%	-0.1%
2014 S1	20.21	0.1%	29.81	2.1%	24.46	5.3%	15.85	-0.7%	19.67	-3.9%	0.9%
2014 S2	19.87	-1.7%	29.74	-0.2%	23.38	-4.4%	17.02	7.4%	18.67	-5.1%	-1.2%
2015 S1	20.09	1.1%	29.51	-0.8%	24.5	4.8%	16.76	-1.5%	18.51	-0.9%	0.6%
2015 S2	19.83	-1.3%	29.46	-0.2%	24.28	-0.9%	16.82	0.4%	18.74	1.2%	-0.2%
2016 S1	20.34	2.6%	29.69	0.8%	24.13	-0.6%	16.85	0.2%	18.94	1.1%	0.8%
2016 S2	20.10	-1.2%	29.77	0.3%	23.4	-3.0%	17.11	1.5%	19.62	3.6%	0.0%
2017 S1	19.50	-3.0%	30.48	2.4%	21.42	-8.5%	16.9	-1.2%	19.36	-1.3%	-2.1%
2017 S2			30.48	0.0%					19.93	2.9%	
Aver- age	19.96	0.0%	28.0	1.7%	22.4	0.7%	15.5	2.0%	19.7	0.6%	1.0%

Table 7. Electricity prices for households in the EU union (2010-2017)

4.3 MAINTENANCE COSTS

As a result, from the first round of data collection, we observed that the maintenance costs for the case studies were not fully available with a relevant level of accuracy and detail. In fact, the analysed buildings have been built between 2009 and 2016, and only minor maintenance had already taken place. Moreover, following the general current design and construction practice, there are no relevant preliminary evaluations of the impact of maintenance costs during the building life cycle. Therefore, the analysis within CRAVEzero is based on standard values from the literature. In particular, the standard EN 15459:2017 (Ener-

gy performance of buildings - Economic evaluation procedure for energy systems in buildings) provides yearly maintenance costs for each element, including operation, repair, and service, as a percentage of the initial construction cost. The standard provides a detailed breakdown of the costs for the HVAC, as reported in Table 8. For the passive building elements, an average yearly value accounting for 1.5% of the construction cost has been assumed for the evaluation. The value has been cross-checked with average values coming from the experience of the industry partners. Accordingly, the yearly maintenance costs for each building element are evaluated and actualized as described in Section 4.1.

COMPONENT	LIFESPAN (YEARS)			ANNUAL MAINTENANCE (% OF INITIAL INVESTMENT)				
	min	max	adopted	min	max	adopted		
Building elements	1	2	1.5	-	-	40		
Air conditioning units	15	15	15	4	4	4		
Control equipment	15	20	17	2	4	3		
Cooling compressors	15	15	15	4	4	4		
Duct system for non-filtered air	30	30	30	6	6	6		
Electric wiring	25	50	40	0,5	1	1		
Water floor heating	50	50	40	2	2	2		
Heat pumps	15	20	17	2	4	3		
Heat recovery units	15	15	15	4	4	4		
Meters	10	10	10	1	1	1		
Pipes, stainless	30	30	30	1	1	1		
Radiators	30	40	35	1	2	1,5		
Solar collector	15	25	20	0,5	0,5	0,5		
Tank storage for DHW	20	20	20	1	1	1		

Table 8: Selected maintenance values for building services from the EN 15459:2018.

4.4 NORMALIZATION

The analysed case studies are located in different European countries, i.e. Austria, Germany, France, Italy, and Sweden. Each country presents specific characteristics in terms of climate conditions, construction, and energy market. Therefore, in order to compare the results of the case studies and to draw a general overview of the costs of the current nZEB practices, a normalization of the collected data is needed. In this re-

4.4.1 CONSTRUCTION COST

The impact of the construction costs on the life cycle is affected by several country-related factors. In fact, the price of the materials can be influenced by several national and international economic factors, as well as the costs of transports, strongly affected by the fuel costs, and the labor cost. In order to reduce the perturbations of the results caused by these national specificities and to compare the case studies, it is gard, the following sections present an overview of the normalization factors adopted for comparing the data of the case studies for construction, energy prices, and climate conditions. It is important to point out that the normalisation is applied for analysing the results in Section 5.1, while the separate spreadsheets report the actual costs provided by the partners.

important to find a common factor to normalize the construction costs.

The ECC (European Construction Costs) has calculated a comprehensive European construction cost index that quantifies the ratio among the construction costs of EU countries, considering the above-mentioned factors [9]. The normalization of the construction costs within CRAVEzero is carried out with the values reported in Table 9.

CONSTRUCTION COST INDEX

France	Austria	Germany	Italy	Sweden
103.87%	100.67%	96.62%	93.63%	134.19%
	Table 9: Constru			

4.4.2 YEAR OF CONSTRUCTION

Another factor influencing the costs of investment and operation is the adopted reference year for the actualization, usually the year of the construction. For this analysis, considering that 10

out of 12 demo cases (Table 10) have been constructed between 2012 and 2015, in order to simplify the evaluation process, the normalization of the year of construction has been neglected.

Green Home	2016	Isola Nel Verde A	2012
Les Héliades	2015	Isola Nel Verde B	2012
Residence Alizari	2015	Solallén	201
NH - Tirol	2008-2009	Väla Gård	201
Parkcarré	2014	Aspern	201
			201
More	2014	I.+R. Schertler	201

Table 10: Demo cases year of construction.

4.4.3 CLIMATE

The energy cost of a building is determined by both energy prices and consumption. In order to neglect the effect of the climate conditions on the energy consumption, it is important to normalize the energy costs according to the climate condition of the building location. The most relevant contribution to the energy consumption of the case studies is the heating demand; thus, we focused the normalization on that index. In this regard, we assumed the heating degree days

(HDD) as a normalization factor. The values are assumed from the report by Ecofys "U-value and better energy performance" [11], which provides the HDD for a set of reference cities of the EUcountries. The HDD is calculated as the sum, over the year, of the difference between the reference temperature (i.e. 20°C) and the average daily temperature of the day (T_m) , when it is lower than 15°C

HDD = $\sum (20^{\circ} - T_m)$, when $T_m < 15^{\circ}C$

The HDD adopted for the case studies are summarized in Table 11.

REFI	ERENCE HEATING DE	GREE DAYS (HDD)	
Green Home	2702	Isola Nel Verde A	2616
Les Héliades	2377	Isola Nel Verde B	2616
Residence Alizari	2702	Solallén	4010
NH - Tirol	4256	Väla Gård	3720
Parkcarré	3730	Aspern	2844
More	2616	I.+R. Schertler	3413

DIGE UP (TING DEODER DAVA (UDD

Table 11: Heating degree days for the locations of the demo cases (Source: Ecofys).

4.4.4 ENERGY PRICES

Finally, in order to compare the energy costs, a normalization, which considers differences in energy prices among countries, is done. The average value calculated accounts for $0,174 \notin kWh$, that is adopted for the normalization of the energy supply and for calculating the results compared in Section 5.1. This value has been calculated considering the average price for each fuel/energy vector adopted by the case studies.

For heating and domestic hot water preparation mainly three technologies have been implemented in the demo cases (heat pump, district heating, and pellet boiler); Table 12 reports the value of the energy price adopted for each case study. The energy price for district heating reported in Table **11** has been taken from Eurostat, since in most cases it is not available.

CASE STUDY	HEAT	ING	DHW				
	Technology	Energy price [€/kWh]	Technology	Energy price [€/kWh]			
Green Home	Direct elt.	0.155	Heat Pump	0.155			
Les Héliades	District heating	0.10	District heating	0.10			
Residence Alizari	Pellet Boiler	0.046	HP	0.146			
NH - Tirol	District heating	0.10	District heating	0.10			
Parkcarré	District heating	0.10	District heating	0.10			
More	Heat Pump	0.21	Boiler	0.21			
Isola nel Verde A	Heat Pump	0.21	Heat Pump	0.21			
Isola nel Verde B	Heat Pump	0.21	Heat Pump	0.21			
Solallén	Heat Pump	0.187	Heat Pump	0.187			
Väla Gård	Heat Pump	0.12	Heat Pump	0.12			
Aspern	District heating	0.10	District heating	0.10			
I.+R. Schertler	Heat Pump	0.10	Heat Pump	0.10			

Table 12: Energy prices for the demo cases for heating and domestic hot water.

4.5 KEY PERFORMANCE INDICATORS

To display the results of the data analysis of each case study, a set of key performance indicators have been proposed. In particular, a list of all performance indicators has been provided to the project partners. These have rated the performance indicators (3 - very interesting; 2 - interesting; 1 - not interesting), and with this rating,

the most relevant ones have been selected. Table **13** presents the indicators that obtained an average rating higher than 2. These performance indicators will be used to assess the performances of each building, to draw a comparison among the case studies and to set-up the nZEB spread-sheets.

RATING	KPI	RATING	KPI
3	LCC / usable floor surface	2,4	Cooling energy demand for cooling
2,8	Investment cost / usable floor surface	2,4	Energy demand for hot water production
2,6	Operation cost / usable floor surface	2,4	Annual renewable energy generation
2,6	Renewable energy share	2,2	Maintenance cost / usable floor surface
2,6	PV annual electricity yield	2,2	Maintenance cost / investment cost
2,6	Annual CO2 emissions	2,2	Final energy consumption
2,5	Life-cycle CO2 emissions	2,2	Specific heating demand
2,4	LCC	2,2	Specific cooling energy consumption
2,4	WLC	2,2	Specific hot water energy consumption
2,4	Investment cost	2,2	Specific Electricity energy demand
2,4	Operation cost	2	LCC / renewable energy installed capacity
2,4	Maintenance cost	2	Operation cost / PV energy production
2,4	Primary energy consumption	2	Electricity energy demand (lighting, appliances)
2,4	Heating demand for heating	2	Energy demand for ventilation

Table 13: Rated key performance indicators.

5.RESULTS

5.1 PRESENTATION OF THE OVERALL LCC RESULTS

This section reports a general overview of the calculation for the case studies, with the comparison of the costs and the impact of the different phases on the overall LCC. It is important to point out that the results are normalized according to the criteria illustrated in paragraph 4.4.

DEMO CASE		NAME/CODE	TYPOLOGY	LOCATION
Bouygues	Green Home	Case 1	Residential	Nanterre (France)
	Les Héliades	Case 2	Residential	Angers (France)
	Residence Alizari	Case 3	Residential	Malaunay (France)
ATP sustain	NH Tirol	Case 4	Residential	Innsbruck (Austria)
Kohler&Meinzer	Parkcarré	Case 5	Residential	Eggenstein (Germany)
Moretti	More	Case 6	Residential	Lodi (Italy)
	Isola nel Verde A	Case 7	Residential	Milan (Italy)
	Isola nel Verde B	Case 8	Residential	Milan (Italy)
Skanska	Solallén	Case 9	Residential	Växjö (Sweden)
	Väla Gård	Case 10	Office	Helsingborg (Sweden)
ATP sustain	Aspern	Case 11	Office	Vienna (Austria)
	I.+R. Schertler	Case 12	Office	Lauterach (Austria)

Table 14: Case studies analysed.

Figure 5 and Figure 6 show the overview of LCC calculated considering a period of 40 years for the 12 case studies, with a breakdown of the cost for each phase. In particular, Figure 5 reports the percentage value of the impact of each phase on the LCC, considering design, construction labor, maintenance and other costs (including the building site management). The cost of materials ranges from around 30% (for the case study Solallèn) to 48% (i.e. Green Home and Isola nel Verde), while the impact of the labor varies from around 2% towards 26%, where the lowest value occurs for Green home and the highest for Solallèn. In this regards, it is important to point out that the detailed breakdown of the labor and the material costs is not always available; in fact, the cases Isola nel Verde A and B and Schertler does not include this information. On the other hand, it occurs that the labor is particularly low because the breakdown between materials and labor is not complete for all the building elements, but the construction costs are reported as a whole. Therefore, the most significant information for

all the cases is the sum of materials and labor (i.e. construction costs), that ranges for all the cases from around 41% to 61%.

Figure 6 shows the absolute values in €/m^2 of the LCC. It is important to point out that the contribution from the RES is accounted as a reduction of the energy cost of the overall life cycle (calculated as a balance between energy consumed and produced). In case of Greenhome, the energy reported in the chart assumes a negative value, since the energy produced is higher than the energy consumed, considering the large PV field installed.

Figure 7 shows an overview of the average impact of all the phases on the LCC, the investment costs for design, material labor and other initial expenditures is around 60% of the LCC, while the energy and maintenance account for around 40%.

As it was expected, the energy costs during the life cycle of a nZEB represent a minor contribution to the LCC, with an average of around 15%. Figure 8 shows the overview of the design costs, reported as a percentage of the overall LCC and in absolute value (cost per unit surface). It is possible to point out that the design cost has a reduced impact on the LCC, ranging from 2.6% (Case NH Tirol) to 8% (Parkarrè). One of the

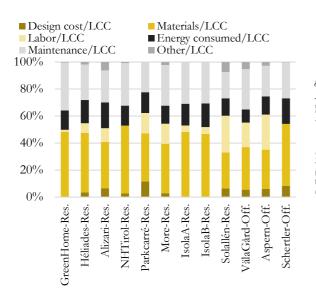


Figure 5: Life-cycle cost breakdown – share of the phases

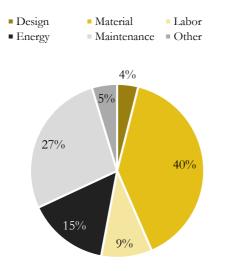


Figure 7: Life-cycle cost breakdown - average.

possible causes of the different impact, a part of the general complexity of the building design, could be the higher design costs for the integration of the RES. In fact, in Parkarrè the 41% of the energy is supplied by a photovoltaic system (30 W/m² installed).

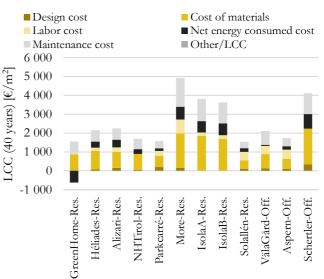


Figure 6: Life-cycle cost breakdown - normalized values.

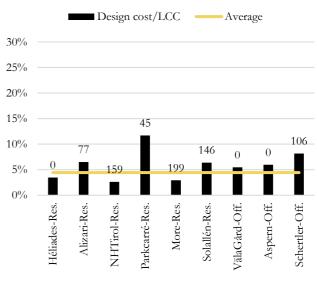


Figure 8: Design cost / LCC

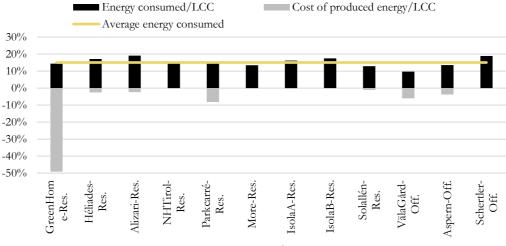
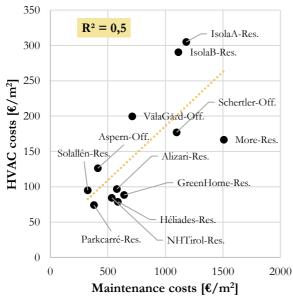


Figure 9: Energy cost / LCC

1400


1200

 $R^2 = 0,7$

Figure 9 shows the relation between the energy cost and the overall LCC for all the cases. The impact of the energy cost on the life cycle cost is quite homogeneous. The RES installed contribute as revenue to the LCC, in particular for GreehHome, where the balance is strongly positive, and the energy produce exceeds significantly the energy consumed and for Parkarrè, where the PV covers 13% of the energy consumed. In general, the energy consumed ranges from 9% to around 20%.

Figure 10 shows the correlation between maintenance and investment costs for the HVAC system installed. It can be pointed out that the most complex plant's typologies also require high maintenance costs. This is also connected to the calculation approach that evaluates the maintenance costs as a percentage of the investment, according to the plant typology adopted.

In Figure 11 the relation between the shape factor and the cost of building elements is presented. In this case, the coefficient of determination (R² index), that measures the correlation between two variables, is quite high, representing a good positive correlation between the two considered factors: the higher the shape factor, the higher the costs of building elements. In fact, the case with the highest cost (\mathbb{C}/m^2) is More, that is a singlefamily house with a shape factor of around 0.8.

Building elements costs [€/m²] IsolaA-Res 1000 IsolaB-Re Héliades-800 Res Alizari-Res. 600 Parkcarré Parkcarré-400 Res. 200 VälaGård-Off. 0 0,00 0,20 0,40 0,60 0,80 1,00 Shape factor

Figure 10. Correlation between HVAC costs and maintenance costs.

Figure 11. Correlation between building elements costs and shape factor.

More-Res.

e

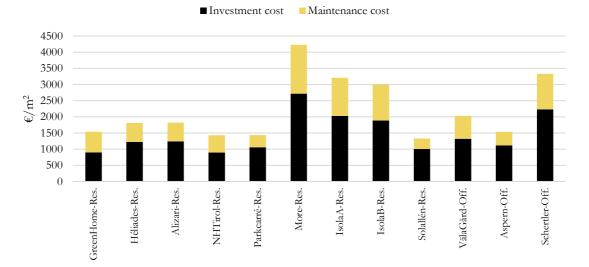
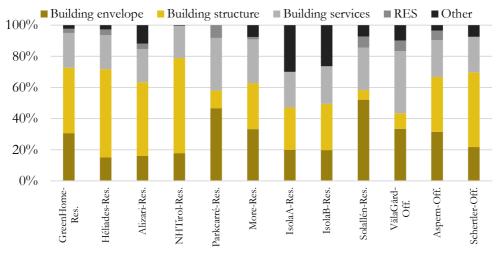
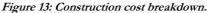
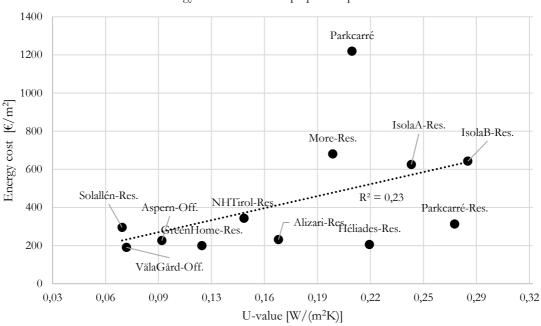





Figure 12: Investment cost vs. maintenance cost.



In Figure 12, the unitary investment for the design and construction are compared to maintenance costs, considering the treated floor area (i.e. heated surfaces as inserted in PHPP) of the buildings. Since the maintenance costs were estimated to be a percentage of the initial investment according to the technologies installed, there is a strong relationship between initial investment and maintenance. It is highlighted the high impact of the maintenance cost on the overall life cycle of the buildings, that is comparable to the initial investment costs. Figure 13 reports the breakdown of the cost for the building elements, highlighting the impact on the construction costs. It shows that in some cases the structural elements represent a significant contribution to the construction, according to the complexity and the dimension of the building. On the other hand, nZEB related technologies have a small impact on the construction costs, although in comparison to a traditional building the cost for the HVAC system and the integration of renewables is more significant.

Energy cost vs. U-value opaque components

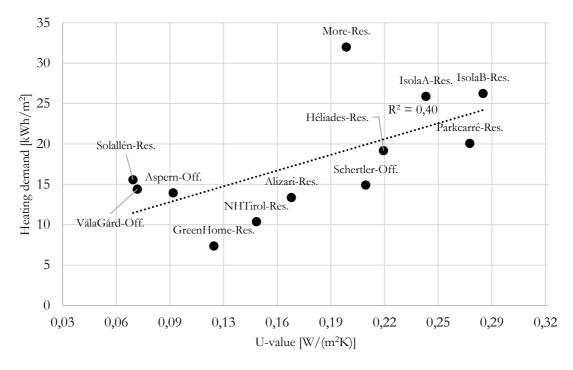


Figure 15: Correlation between heating demand and U-values.

Figure 14 and Figure 15 show the correlation between U-value of the opaque envelope and, respectively, unitary energy costs (expressed in \notin/m^2 of treated floor area) as well as heating energy demand (expressed in kWh/m² and year). Although it is possible to identify a proportional growth, since both the energy costs and the heating demand increase proportionally according to the thermal transmittance, the R2 (coefficient of determination) index is quite low in both cases, highlighting a weak correlation. In this regard, one can point out that the impact of the HVAC system on the energy costs and demand is quite significant. Figure 16 and Figure 17 report the cost of building envelope and HVAC and the cost of the installation of RES in relation to the

energy consumed for heating, cooling, ventilation and DHW production.

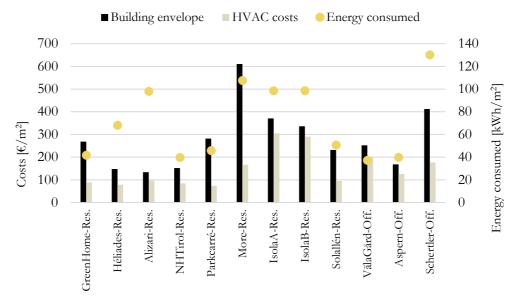
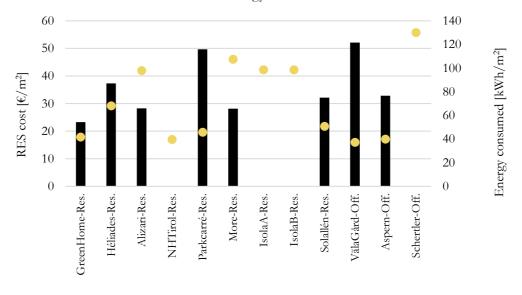



Figure 16: Envelope and HVAC costs vs energy consumed.

■ RES ● Energy consumed

Figure 17. RES costs vs. energy consumed

5.2 EXAMPLE OF THE REVENUE EVALUATION

As highlighted in the introduction, the revenues are an important aspect to be included in the LCC evaluation in order to promote the higher value of a nZEB. Nevertheless, they are not considered in the current design-construction practice, in fact for the cases analyzed within CRAVEzero, the data collection of revenues lacks of comprehensive and structured information. In order to provide in this report the approach for including revenues in the evaluation, this section presents an example of the Case Study 5 (i.e. Parkcarré), whose data were available.

The building is currently rented with a monthly charge of $9.50 \notin /m^2$, and for the LCC evaluation, the annual rent price increase has been assumed equal to the annual housing price increase for the CRAVEzero countries in the period 2005-2018, which is 3.1% (source: Eurostat).

The revenue values have been actualized to the year of construction by using the same interest rate used for the costs: 1.51%.

Figure 15 presents the LCC including the revenues generated by the rent of the building and by the production of the PV. For this preliminary analysis, the total production of the PV contributes to the revenues, and the feed-in tariff is set to the value of the energy price. For a more detailed evaluation, it would be necessary to assess the amount of energy delivered to the grid and the actual energy tariff according to the local specificities.

In Figure 18, the costs (design, construction, energy consumed and maintenance), are displayed as negative values, while the revenues are considered as positive.

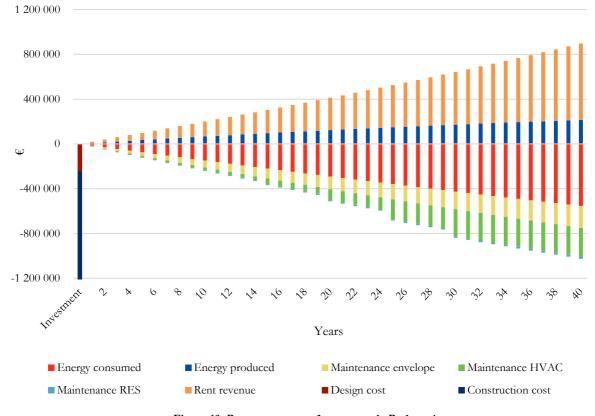


Figure 18. Revenue streams for case study Parkcarrè

6.CONCLUSIONS AND FURTHER DEVELOP-MENTS

Deliverable D2.2 describes the approach for the life cycle cost analysis of the CRAVEzero case studies, including the boundary conditions and detailed specificities of the calculation.

The survey of the case studies represents the database of information that will support the further developments of the project, dealing with the identification and the reduction of the extracosts in technologies and processes.

At the current stage of development, the calculation approach allows evaluating the LCC of the case studies by adopting real data and fixed boundary conditions.

As highlighted in Kneifel (2010), the LCC calculation is affected by several uncertainties, mainly due to the need of estimating, in the initial phase of the project, the predicted future energy performance of the building and components during the lifetime. In addition, the future trend of a set of economic boundaries (i.e. interest rate, energy costs and inflation) can strongly affect the LCC, in particular when a longer period is considered. On the one hand, as stated before, the availability of databases with actual building LCC would help to increase the reliability of the evaluations, providing useful benchmarks and references. On the other hand, one of the future key developments of the CRAVEzero spreadsheet will be the implementation of uncertainty analysis, in order to allow for a probabilistic calculation considering all the factors and boundaries affecting the LCC.

Another future development of the CRAVEzero calculation approach will be the implementation of the co-benefits in the economic analysis. As demonstrated in [2] the return of investment in energy efficiency measures to reach the nZEB target is around 25-40 years, if calculated only in terms of energy cost saving. Nevertheless, as assessed by Berggren, Wallb, and Togeröc [12], the cost-effectiveness of nZEB construction becomes more apparent if the co-benefits and revenues are included in the analysis. For the case of Väla Gård, if only reduced costs due to energy use and PV grant would be considered, the breaking point is after 26 years, while considering the benefits dealing with employee turnover, sickness absence, increased productivity and building value, the breaking point occurs after 5 years.

In this regard, a comprehensive approach for evaluating LCC including uncertainties and cobenefits is strategic to enable the nZEB market uptake and will be developed in the future actions of the project.

7.REFERENCES

- [1] EPBD recast-European Commission. (2010). Energy Performance of Buildings Directive 2010/31. EU of the European Parliament and of the Council of, 19.
- [2] Kneifel, J. (2010). Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. *Energy and Buildings*, 42(3), 333–340.
- [3] Moran, P., Goggins, J., & Hajdukiewicz, M. (2017). Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. *Energy and Buildings*, 139, 590–607
- [4] Di Giuseppe, E., Iannaccone, M., Telloni, M., D'Orazio, M., & Di Perna, C. (2017). Probabilistic life cycle costing of existing buildings retrofit interventions towards nZE target: Methodology and application example. *Energy and Buildings*, 144, 416–432.
- [5] Feist, W., Pfluger, R., Schneiders, J., Kah, O., Kaufman, B., Krick, B., Ebel, W. (2012). Passive House Planning Package Version 7. *Darmstadt: Rheinstrahe, Germany.*
- [6] CEEC. (n.d.). Code of Measurement for Cost Planning. Retrieved from https://www.ceecorg.eu/
- [7] Dwaikat, L. N., & Ali, K. N. (2018). Green buildings life cycle cost analysis and life cycle budget development: Practical applications. *Journal of Building Engineering*, 18, 303–311.
- [8] Kirk, S. J., & Dell'Isola, A. J. (1995). Life cycle costing for design professionals.
- [9] Eurostat. Electricity prices for households in the European Union 2010-2017, semi-annually. Retrieved from http://epp. eurostat.ec.europa.eu
- [10] European Construction Costs. Cost Index. Retrieved from http://constructioncosts.eu/costindex/
- [11] Ecofys . U-values For Better Energy Performance of Buildings. Retrieved from https://www.ecofys.com/en/
- [12] Berggren, B., Wallb, M., & Togeröc, Å. (2017). Profitable Net ZEBs–How to break the traditional LCC analysis.

ANNEX 1

DATASHEETS OF THE CASE STUDIES

In this section, an overview of the results for each case study is presented in a set of structured nZEB spreadsheets. The values presented are not normalised according to the country specificities, but are calculated considering the actual values provided by the industry partners.

Each data sheet provides a brief description of the case study and two main sections: investment costs and Life Cycle Costs, where the selected CRAVEZero KPIs.are reported and deepen through charts and schemes. In the first section, the investment cost is divided into design cost, materials and labor (for the construction) and building site management. A detailed breakdown of the design and construction costs is also displayed. Furthermore, it reports the information about energy consumption and CO₂ emissions.

The second section describes the life-cycle perspective on a 40-year period, and the main indicators reported are:

- WLC
- LCC
- Energy consumption
- Maintenance
- Maintenance/Investment
- RES/LCC

When unitary costs are considered, the treated floor area is assumed for normalising the costs and energy consumed.

Where a detailed cost breakdown was not available, the corresponding chart is not displayed, but the spreadsheet reports the most detailed data provided by the project partner.

DEMO CASE 1: "Green Home" – BOUYGUES

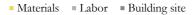
GENERAL INFORMATION

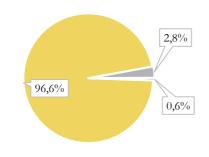
Architect: Atelier Zündel Cristea

Energy concept: plus-energy residential building

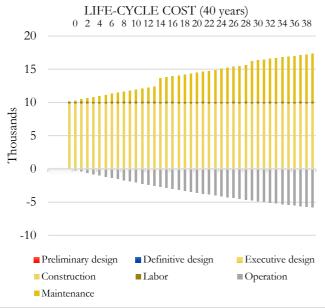
Location: Nanterre (France)

Construction Date: 2016

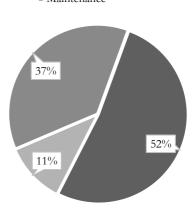

Net floor area: 9267 m²


Primary Energy Demand: 93 kWh/(m²a)

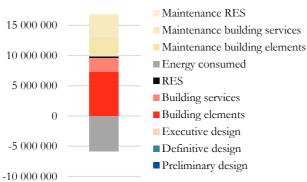
Key technologies: triple-glazed windows, decentralized ventilation with 96% of heat recovery, heat recovery on grey water.


INVESTMENT COSTS

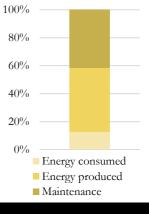
INVESTMENT COST


INV	VESTMENT COST	5 DESIGN COST		BUILDING SITI MANAGEMENT		CTION COSTS
	10.189.126 €	-		63.310 €	10.12	25.816 €
Cons	struction cost [€]	0 500 000 1 000 000	1 500 000 2 00	0 000 2 500 000	Impact of nZEB technologies on the investment cost	
Wal Ro ls ofs	Flat roof				Construction cost	10.125.816€
Wal Is	External wall				[€]	10.120.0100
	Windows				RES	3%
Windows	Shading Systems				HVAC	11%
Win	Internal floor				DHW	1%
	Internal door					
	Foundations				VMC	9%
	Balcony				Heating	0%
ients	Banisters				Windows	8%
Structural Elements	Lift Other				Final Energy C	onsumption
tructur	DHW production Ventilation unit	_			Energy demand heating [kWh]	79.727
S	Electric				Energy demand cooling [kWh]	15.329
RE S	Hydraulic system PV				Energy demand DHW [kWh]	59.029
Other	Other Garden, plans				Household elt. + aux. [kWh]	231.384
Ő	External Installations				Annual RES generation [kWh]	79.727
		■ Material cost [€]			Annual CO ₂ Emissions [kgCO ₂]	204.798

COST DISTRIBUTION



- Net energy consumed
- Maintenance



WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
7.205.196	11.580.243	71%	11.580.243	-5.814.079	2%

BREAKDOWN OF THE LIFE CYCLE COST 20 000 000

ENERGY & MAINTENANCE

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	0 €/m ²	
		0 €/m ²	Definitive	0 €/m ²	
			Executive	0 €/m ²	
				Building Elements	660
	Investment		Materials 1124 €/m ²	Building Services	203
	941 €/m²	Construction		RES	24 €/m ²
		935 €/m²		Other	
			Labor	21 €/m ²	
			27 €/m ²		
LCC (40)		Building site manage-	6 €/m ²		
1069				Heating	42 €/m ²
€/m ²			Consumed	Cooling	8 €/m ²
		Energy	199 €/m²	DHW	31 €/m ²
		-537 €/m²		Household el.+ aux. 123€/m ²	
	Operation		Produced		
	128 €/m ²		736 €/m ²		
		Maintenance	Envelope	296 €/m ²	
		665 €/m ²	HVAC	323 €/m ²	
			RES	24 €/m²	
		01 00 0/ 0			

Other 23 €/m²

DEMO CASE 2: "LES HÉLIADES" – BOUYGUES

GENERAL INFORMATION

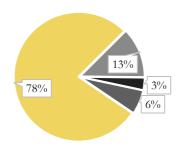
Architect: Barré - Lambot

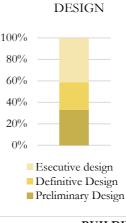
Energy concept: ZEB

Location: Angers (France)

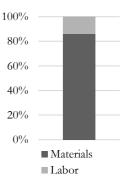
Construction Date: 2015

Net floor area: 4590 m²


Primary Energy Demand: 52 kWh/(m²a)


Key technologies: Well insulated and air tight, balanced ventilation with heat recovery, ground source heat pump, photovoltaic panels.

INVESTMENT COSTS


INVESTMENT COST

Design
 Materials
 Labor
 Building site

MATERIALS & LABOR

BUILDING SITE MANAGEMENT **INVESTMENT COSTS** DESIGN COSTS CONSTRUCTION COSTS 222.566 € 6.418.797 € 7.075.763 € 434.400 € Impact of nZEB technologies Construction cost [€] on the investment cost 0 500 000 1 000 000 1 500 000 2 000 000 Flat roof Construction cost 10.125.816 € Roofs Ground floor [€] Floor next outside Floor next to unheated RES 3% Walls External wall HVAC 6% Wall next to ground Windows Element DHW 1% Shading Systems s External Doors VMC 1% Internal Internal partition 4% Heating s Internal floor Internal door Windows 3% Raising and foundations Structural Elements Banisters Final Energy Consumption Stair Lift Energy demand 103.561 heating [kWh] Other Heating system 1 Energy demand cooling [kWh] 2.207 Building Services DHW production Ventilation unit Energy demand DHW [kWh] 86.646 Electric Hydraulic system Household elt. + aux. [kWh] PV 77.988 RES

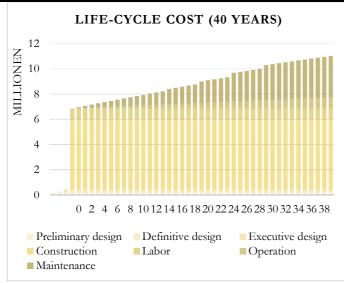
Construction cost [€]

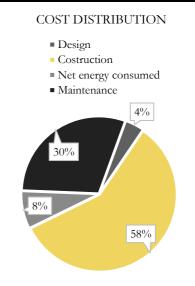
Solar Thermal Other

Garden, plans External Installations

Other

32


55.099


53.434

Annual RES

generation [kWh]

Annual CO₂ Emissions [kgCO₂]

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (4	(10) RES/LCC
11.258.184 €	3.296.385 €	47%	11.241.884 €	869.736 €	2%
	Breakdown of the Lif	e Cycle Cost		ENER MAINTE	CGY & ENANCE
100%	■ Mai	ntenance RES		1009/	
90% ——	- Mai	ntenance building services		100%	
80% ——	- Mai	ntenance building elements		80% ——	
70%	■ Ene	rgy consumed		60%	
60%	■ RES	3			
50% ——	Buil	ding services		40%	
40% ——	■ Buil	ding elements		20% —	
30% —	■ Exe	cutive design		0%	
20% —		initive design		070	
10% — 0% —		iminary design		nergy consumed laintenance	Energy produced

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	26 €/m ²	
		80 €/m ²	Definitive	21 €/m ²	
			Executive	33 €/m ²	
				Building Elements	734€/m ²
	Investment		Materials 1023 €/m ²	Building Services	223€/m ²
	1310 €/m ²	Construction		RES	39 €/m ²
		1189 €/m ²		Other	
			Labor	27 €/m ²	
			166 €/m ²		
LCC (40)		Building site manage-	41 €/m ²		
2082			Consumed 205 €/m ²	Heating	71 €/m ²
€/m ²				Cooling	2 €/m ²
		Energy		DHW	60 €/m ²
		161 €/m ²		Household el.+ aux.	78 €/m ²
	Operation		Produced		
	772 €/m ²		44 €/m²		
		Maintenance 610 €/m ²	Envelope	329 €/m ²	
			HVAC	204 €/m ²	
			RES	60 €/m ²	
		0.1 + 10.0/2			

Other $18 \notin m^2$

DEMO CASE 3: "RESIDENCE ALIZARI" - BOUYGUES

DESIGN COSTS

GENERAL INFORMATION

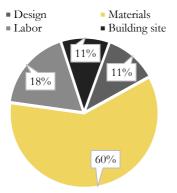
Architect: Atelier des Deux Anges

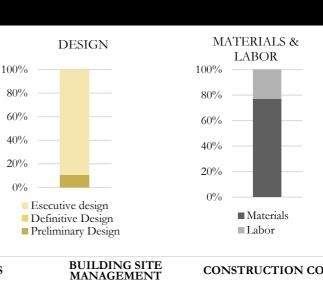
Energy concept: ZEB and PassivHaus

Location: Malaunay (France)

Construction Date: 2015

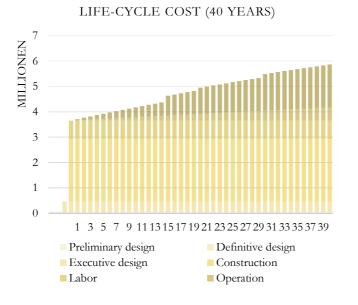
Net floor area: 2776 m²

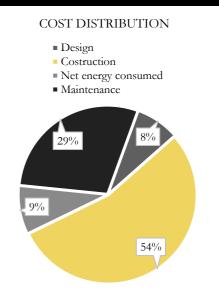

Primary Energy Demand: 82 kWh/(m²a)


Key technologies: High-performance, double-flux ventilation with heat recovery, centralized wood boiler, photovoltaics.

COSTS

INVESTMENT COSTS





4.082.683 € 465.400 € 430.961 € 3.186.322 € Impact of nZEB technologies Material and labor cost $[\mathbf{\ell}]_{0}$ 100 000 200 000 300 000 400 000 500 000 600 000 on the investment cost Roo fs Flat roof Construction 3.186.322 € cost [€] External wall Walls Wall next to unheated RES 3% Windows Windo WS HVAC 9% Shading Systems Element DHW 0% Internal Internal partition ., VMC 3% Internal floor Foundations 6% Heating Structural Elements Raising structure Windows 3% Lift Final Energy Consumption Other Heating system 1 Energy demand 37.743 heating [kWh] Building Services Ventilation unit Energy demand cooling [kWh] Electric 5.420 Hydraulic system Energy demand DHW [kWh] 94.842 ΡV RES Household elt. + aux. [kWh] Garden, plans 71.720 External Installations Annual RES 29.201 ■Labour cost [€] Material cost [€] generation [kWh] Annual CO₂ Emissions [kgCO₂] 61.088

CONSTRUCTION COSTS

34

Energy consumed Energy produced

Maintenance

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
6.327.300 €	1.699.010 €	42%	6.299.009€	517.317 €	1%
	Breakdown of the Lif	e Cycle Cost		ENERGY	&
6 000 000 —				MAINTENA	NCE
0 000 000		Maintenance		100%	
5 000 000		 Energy produced 			
5 000 000		Energy consumed		80% — —	
4 000 000		Other			
4 000 000 -		RES		60% — —	
2 000 000		 Building services 		4007	
3 000 000 -		0		40%	
		Building elements		200/	
$2\ 000\ 000$ —		Other		20%	
		RES		0%	
1 000 000		- 0. 11		070 -	

BREAKDOWN OF THE UNITARY LCC

Building services

Building elements

1 000 000

0

		Design	Preliminary	18 €/m²	
		165 €/m ²	Definitive	0 €/m ²	
			Executive	147 €/m ²	
				Building Elements	552€/m ²
	Investment 1445 €/m ²		Materials 1023 €/m ²	Building Services	186€/m ²
		Construction		RES	29 €/m ²
		1128 €/m ²		Other	
			Labor	103 €/m ²	
			257 €/m ²		
LCC (40)		Building site manage-	153 €/m ²		
2230		UUUUUUUUU		Heating	23 €/m ²
E/m^2			Consumed 231 €/m ²	Cooling	11 €/m ²
		Energy		DHW	57 €/m ²
		183 €/m ²		Household el.+ aux.	146 €/m ²
	Operation		Produced		
	785 €/m²		48 €/m ²		
		Maintenance	Envelope	247 €/m²	
		601 €/m ²	HVAC	291 €/m ²	
			RES	32 €/m ²	
		O(1) = 21 C (-2)			

Other $31 \notin m^2$

DEMO CASE 4: "NH - Tirol" – ATP sustain

GENERAL INFORMATION

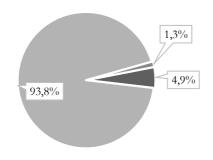
Architect: Architekturwerkstatt DIN A4

Energy concept: cogeneration with wood, solar thermal

Location: Innsbruck (Austria)

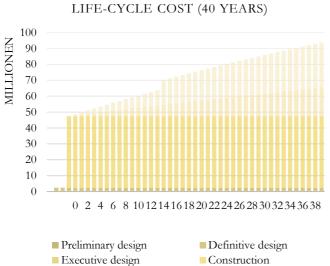
Construction Date: 2008-2009

Net floor area: 44.959 m²

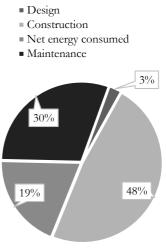

Primary Energy Demand: 66 kWh/(m²a)

Key technologies: centralized pellet boiler, ventilation with heat recovery

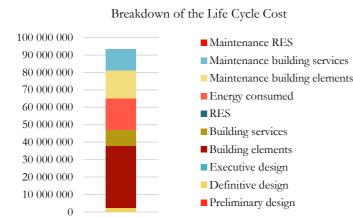
INVESTMENT COSTS


INVESTMENT COST

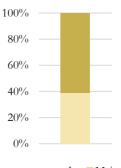
Design = Materials = Building site


INV	ESTMENT COSTS	DESIGN COSTS	BUILDING SITE MANAGEMENT	CONSTRUC	CTION COSTS
	48.022.514 €	2.358.000 €	634.106 €	45.03	60.408 €
Mate	erial and labor cost [€] $_0$	5 000 000 10 000 00	00 15 000 000 20 000 000	Impact of nZEB on the invest	
WallRoof s s	Flat roof			Construction cost [€]	10.125.816 €
	External wall			RES	0%
Windows	Windows			Heating + DHW	10%
Win	Shading Systems			VMC	0%
ul ts	Internal partition			Windows	6%
Internal Elements	Internal floor				
In Ele	Internal door				
al ts	Structural work			Final Energy C	onsumption
Structural Elements	Lift			Energy demand heating [kWh]	545.238
ы S	Other			Energy demand cooling [kWh]	101.800
trices	Heating system + DHW Electric			Energy demand DHW [kWh]	855.528
Building Services	Hydraulic system			Household elt. + aux. [kWh]	1.334.878
Buile	Garden, plans			Annual RES generation [kWh]	545.238
		Construction cost [€]		Annual CO ₂ Emissions [kgCO ₂]	1.254.362

Labor



Construction
Operation



WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
94.354.111 €	28.290.387 €	59%	94.354.111 €	18.041.209 €	0%

ENERGY & MAINTENANCE

Energy consumed Maintenance

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	0 €/ ^{m2}	
		45 €/m²	Definitive	45 €/m ²	
			Executive	0 €/m ²	
				Building Elements	675€/m ²
	Investment		Materials	Building Services	178€/m ²
	914 €/m²	Construction	1124 €/m ²	RES	$0 \in m^2$
		857 €/m ²		Other	
			Labor	4 €/m ²	
			0 €/m ²		
LCC (40)		Building site management	12 €/m ²		
1795				Heating	42 €/m ²
€/m ²			Consumed	Cooling	8 €/m ²
		Energy	343 €/m²	DHW	31 €/m ²
		343 €/m ²		Household el.+ aux. 123€/m ²	
	Operation		Produced		
	882 €/m ²		0 €/m ²		
		Maintenance	Envelope	302 €/m ²	
		538 €/m ²	HVAC	235 €/m ²	
			RES	0 €/m ²	
		01 10/ 0			

Other $1 \notin m^2$

DEMO CASE 5: "BRUSSELS" – KÖHLER & MEINZER

GENERAL INFORMATION

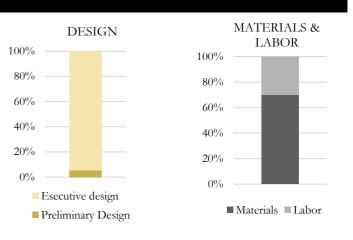
Architect: Alex Stern/Gerold Köhler

Energy concept: Contracting model for the quarter energy supply

Location: Eggenstein (Germany)

Construction Date: 2014


Net floor area: 1109 m²

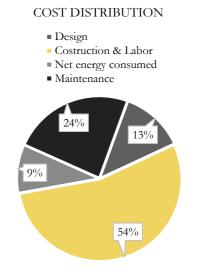

Primary Energy Demand: 62 kWh/(m²a)

Key technologies: best quality thermal insulation and airtight envelope. Decentralized ventilation system with heat recovery

INVESTMENT COSTS

INVESTMENT COST




INVESTMENT COSTS

DESIGN COSTS

CONSTRUCTION COSTS

	1.313.59	00€		246.820	E		1.066.770 €	
Ma	terial and labor cost [€] 0	20 000	40 000	60 000	80 000	100 000	Impact of nZEE on the invest	
	Flat roof						Construction cost [€]	1.066.770 €
Roofs	Pitched roof						RES	5%
<u>т</u>	Ceiling next to ground						HVAC	9%
	Floor next to unheated		_				DHW	2%
Walls	External wall					I	VMC	0%
	Wall next to ground						Heating	6%
vs	Windows					-	Windows	9%
Windows	Internal floor					I	Final Energy C [kW	Consumption h]
	Lift						Energy demand heating [kWh]	25.798
Building Services	Heating system 1 DHW production						Energy demand cooling [kWh]	1.576
ling Se	Electric						Energy demand DHW [kWh]	16.434
	Hydraulic system						Household elt. + aux. [kWh]	26.044
RES	PV						Annual RES generation [kWh]	28.755
	Mate	erial cost [€]	Labour	cost [€]			Annual CO ₂ Emissions [kgCO ₂]	11.775

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC	
2.278.617 €	470.877 €	36%	1.971.944 €	187.477 €	3%	
	Breakdown of the	e Life Cycle Cost		ENERGY &		
00%	_	,		MAINTENANCE	L	
90% —	■ M	aintenance RES		100%		
	■ M	aintenance building servi	ces			
30% —	■ M	aintenance building elem	ents	80%		
70% —		nergy consumed		60%		
50% ——	R	0.				
50%		-		40%		
40% —		uilding services		20% —		
30% —		uilding elements				
20% ——	E	xecutive design		0%		
	∎D	efinitive design		Energy consumed		
.0% —	Pt	reliminary design		Energy produced		
0%		. 0		Maintenance		
REAKDO	OWN OF THI	E UNITARY I	LCC			
	Desi	gn	Preliminary	10 €/m ²		
	192€	E/m^2	Definitive	0 €/m ²		
			Executive	182 €/m ²		
				Building Elements	340€/m ²	
Inv	estment		Materials	Building Services	197€/m ²	

				Dunding Elements	540€/111-
	Investment		Materials	Building Services	197€/m ²
	1022 €/m ²	Construction	581 €/m ²	RES	44 €/m ²
		830 €/m ²		Other	
			Labor	103 €/m ²	
			249 €/m ²		
LCC (40)		Building site management	0 €/m ²		
1534				Heating	23 €/m ²
€/m ²			Consumed	Cooling	11 €/m ²
		Energy	313 €/m ²	DHW	57 €/m ²
		146 €/m ²		Household el.+ aux	. 146 €/m ²
	Operation		Produced		
	512 €/m ²		167 €/m ²		
		Maintenance	Envelope	152 €/m ²	
		366 €/m ²	HVAC	201 €/m ²	
			RES	13 €/m ²	

Other $0 \notin m^2$

DEMO CASE 6: "MORE" - MORETTI

INVESTMENT COSTS

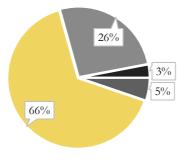
GENERAL INFORMATION

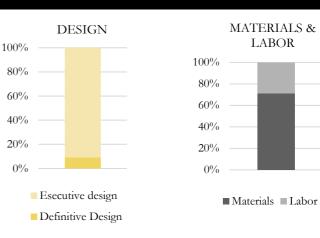
Architect: Valentina Moretti

Energy concept: Heat pump, condensing boiler, solar heating

Location: Lodi (Italy)

Construction Date: 2014

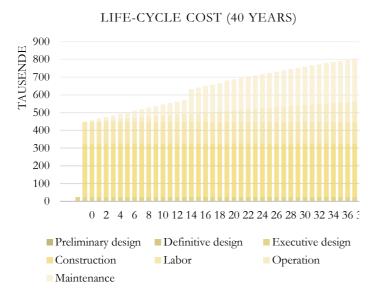

Net floor area: 128 m²

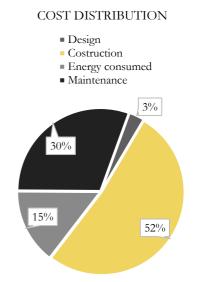

Primary Energy Demand: 62 kWh/(m²a)

Key technologies: precast component, compact model home, central core, flexible and modular

INVESTMENT COST

Design Materials Labor Building site





INVESTMENT COSTS		DESIGN COSTS	BUILDING SITE MANAGEMENT	CONSTRU	UCTION COSTS
	461.760 €	24.106 €	13.844 €	4	23.809 €
Mater	rial and labor cost [€] 0	5 000 10 000 15 000 20 000 25 000 30	000 35 000 40 000 45 000	Impact of nZEI on the inves	
Roofs	Flat roof Ground floor			Construction cost [€]	423.809 €
Wal Is	External wall			RES	1%
Windo Wal ws ls	Windows			HVAC	6%
	Shading Systems			DHW	- %
rnal ents	Internal partition			VMC	2%
Internal Elements	Internal door			Heating	4%
	Foundations			Windows	9%
Structural Elements	Raising structure			Final Energy (Consumption
Strn Ele	Stair Other			Energy demand heating [kWh]	5.631
ses	Heating system 1 Ventilation unit			Energy demand cooling [kWh]	2.398
Servic	Electric			Energy demand DHW [kWh]	4.677
Building Services	Hydraulic system Solar Thermal			Household elt. + aux. [kWh]	4.028
Bu	Garden, plans	(atopia) and [6]		Annual RES generation [kWh]	-

3.750

Annual CO2 Emissions [kgCo₂]

■ Maintenance

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
837.531€	248.543 €	54%	830.026 €	119.723 €	1%
	Breakdown of th	ne Life Cycle Cost		ENERGY &	
000 000		Maintenance RES		MAINTENANO	СE
300 000		Maintenance building set	rvices	100%	
700 000		Maintenance building ele	ements	80% —	
500 000		Energy consumed			
500 000		RES		60%	
100 000		Building services		40%	
300 000	• •	Building elements		20% —	
200 000	•	Executive design		0%	
100 000		Definitive design		- F	1
0	-	Preliminary design		Energy consum	ned

BREAKDOWN LCC OF THE UNITAR

0

		Design	Preliminary	$0 \in m^2$	
		137 €/m ²	Definitive	12 €/m²	
			Executive	125 €/m ²	
				Building Elements	1078€/m
	Investment		Materials	Building Services	482€/m ²
	2624 €/m ²	Construction	1781 €/m²	RES	26 €/m²
		2408 €/m ²		Other	
			Labor	130 €/m ²	
			690 €/m ²		
LCC (40)		Building site management	79 €/m ²		
4716				Heating	250€/m ²
€/m ²			Consumed	Cooling	106€/m ²
		Energy	680 €/m ²	DHW	165€/m²
		680 €/m ²		Household el.+ aux.	178€/m ²
	Operation		Produced		
	2092 €/m ²		- €/m²		
		Maintenance	Envelope	483 €/m ²	
		1412 €/m ²	HVAC	882 €/m ²	
			RES	8 €/m ²	
		Other $30 f/m^2$			

Other $39 \notin m^2$

DEMO CASE 7: "ISOLA NEL VERDE A" – MORETTI

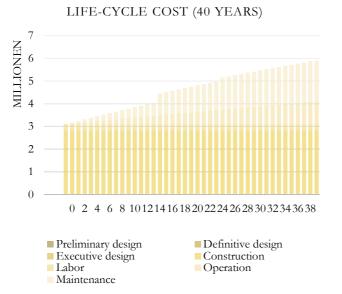
GENERAL INFORMATION

Architect: Studio Associato Eureka

Energy concept: cogeneration system, geothermal heat pump photovoltaic and solar thermal panels supply

Location: Milan (Italy)

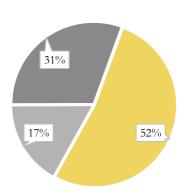
Construction Date: 2012


Net floor area: 1409 m²

Primary Energy Demand: 200 kWh/(m²a)

Key technologies: cogeneration system, geothermal heat pump, photovoltaic and solar thermal panels

BUILDING SITE INVESTMENT COSTS DESIGN COSTS CONSTRUCTION COSTS MANAGEMENT 3.104.301 € -€ -€ 3.104.301 € Impact of nZEB technologies Material and labor cost [€] 0 200 000 400 000 600 000 800 000 on the investment cost Construction cost [€] Roofs Flat roof 3.104.301 € Floor next outside Wa IIs **External wall** HVAC 15% Windows Windows Windows 2% **Shading Systems External Doors** Elements Internal partition Internal Internal floor Internal door Final Energy Consumption Foundations Energy demand heating [kWh] Balcony Structural Elements 42.312 Chimney Energy demand cooling [kWh] 10.608 Stair Energy demand DHW [kWh] Other 33.151 Heating system 1 Building Services Household elt. + aux. [kWh] 48.663 Electric Annual RES **External Installations** 4.055 generation [kWh] Construction cost [€] Annual CO₂ Emissions [kgCO₂] 64.811


42

- Net energy consumed
- Maintenance

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC	
5.911.656 €	1.808.298 €	58%	5.909.628 €	997.028 €	-%	
	Breakdown of the	Life Cycle Cost		ENERGY	&	
6 000 000				MAINTENANCE		
		Maintenance RES		100%		
5 000 000		Maintenance building se	rvices	0.00/		
4 000 000		Maintenance building el	ements	80%		
4 000 000	-	Energy consumed		60% — —		
3 000 000		RES				
		Building services		40%		
2 000 000		Building elements		20% —		
1 000 000	-	Executive design		00/		
1 000 000		Definitive design	0%			
0		Preliminary design	 Maintenance Energy produced 			
				Energy consum		

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	- €/m²	
		- €/m ²	Definitive	- €/m²	
			Executive	- €/m²	
				Building Elements	816€/m ²
	Investment 1899 €/m ²		Materials	Building Services	396€/m ²
		Construction	1124 €/m²	RES	- €/m²
		1899 €/m²		Other	
			Labor	520 €/m ²	
			167 €/m²		
LCC (40)		Building site management	- €/m²		
3615				Heating	202€/m ²
€/m ²			Consumed	Cooling	51€/m ²
		Energy	343 €/m ²	DHW	158€/m ²
		610 €/m ²		Household el.+ aux.	232€/m ²
	Operation		Produced		
	1716 €/m ²		16 €/m²		
		Maintenance	Envelope	366 €/m ²	
		1106 €/m ²	HVAC	585 €/m ²	
			RES	0 €/m ²	

Other $155 \notin /m^2$

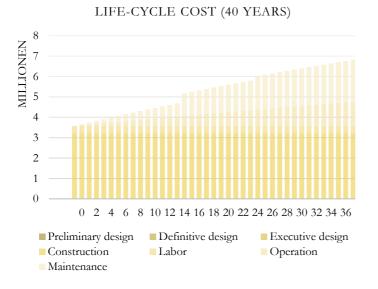
DEMO CASE 8: "ISOLA NEL VERDE B" – MORETTI

GENERAL INFORMATION

Architect: Studio Associato Eureka

Energy concept: cogeneration system, geothermal heat pump photovoltaic and solar thermal panels supply

Location: Milan (Italy)


Construction Date: 2012

Net floor area: 1745 m²

Primary Energy Demand: 200 kWh/(m²a)

Key technologies: cogeneration system, geothermal heat pump, photovoltaic and solar thermal panels

BUILDING SITE INVESTMENT COSTS DESIGN COSTS CONSTRUCTION COSTS MANAGEMENT 3.576.648 € -€ -€ 3.576.648 € Impact of nZEB technologies Material and labor cost [€] on the investment cost 0200 000 400 000 600 000 800 000 Construction cost [€] Flat roof Roofs 3.576.648 € Floor next outside Floor next to unheated HVAC 14% Wal $^{\rm ls}$ External wall Windows 2% Windows Windows Shading Systems External Doors Structural Elements Elements Internal partition Internal Internal floor Internal door Final Energy Consumption Foundations Energy demand heating [kWh] 42.312 Balcony Energy demand cooling [kWh] Chimney 10.608 Stair Energy demand DHW [kWh] 33.151 Other Household elt. + aux. [kWh] Building Services HVAC 48.663 Electric Annual RES 4.055 External Installations generation [kWh] Construction cost [€] Annual CO₂ Emissions [kgCO₂] 42.312

COST DISTRIBUTION

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
5.911.656 €	1.808.298 €	58%	5.909.628 €	997.028 €	-%
7 000 000	Breakdown of t	he Life Cycle Cost		ENERGY MAINTENA	
1 000 000		Maintenance RES		100%	
6 000 000		Maintenance building s	ervices	2211	
5 000 000	I	Maintenance building e	lements	80% —	
1 000 000	I	Energy consumed		60% —	
4 000 000		RES		40%	
3 000 000		Building services		4070	
2 000 000	 •	Building elements		20% —	
1 000 000	1 C C C C C C C C C C C C C C C C C C C	Executive design		0%	
1 000 000		Definitive design			
0		Preliminary design		 Maintenance Energy produc Energy consun 	

BREAKDOWN OF THE UNITARY LCC

		DESIGN	PRELIMI-	- €/m²	
		- €/m ²	Definitive	- €/m²	
			Executive	- €/m²	
				Building Elements	789€/m ²
	INVEST-		Materials	Building Services	384€/m ²
	MENT	Construction	1593 €/m ²	RES	- €/m²
	1767 €/m ²	1767 €/m ²		Other	
			Labor	420 €/m ²	
			175 €/m ²		
LCC (40)		Building site management	- €/m²		
3439 €/m ²				Heating	205€/m ²
		Energy	Consumed 642 €/m ²	Cooling	44€/m ²
				DHW	157€/m ²
		629 €/m ²		Household el.+ aux.	237€/m ²
	Operation		Produced		
	1672 €/m ²		13 €/m ²		
		Maintenance	Envelope	353 €/m ²	
		1043 €/m ²	HVAC	564 €/m ²	
			RES	0 €/m ²	
		Other 125 €/m ²			

45

DEMO CASE 9 – "SOLALLÉN" – SKANSKA

GENERAL INFORMATION

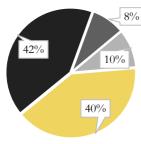
Architect: Skanska Teknik

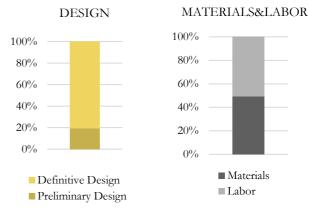
Energy concept: Net ZEB

Location: Växjö (Sweden)

Construction Date: 2015

Net floor area: 1778 m²


Primary Energy Demand: 109 kWh/(m²a)


Key technologies: Well insulated and air tight, Balanced ventilation with heat recovery, Ground source heat pump, Photovoltaic panels

COSTS VESTMENT

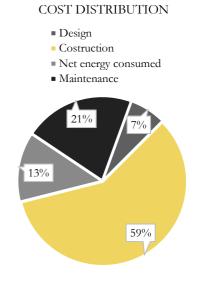
INVESTMENT COST

Building site = Design = Materials = Labor

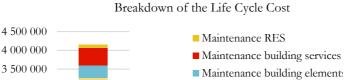
Materials

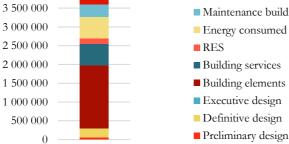
BUILDING SITE MANAGEMENT **INVESTMENT COSTS CONSTRUCTION COST DESIGN COSTS** 3.095.764 € 300.000 € 260.000 € 2.535.764 € Impact of nZEB Material and labor cost [€] technologies on the 50 000 100 000150 000200 000250 000300 000 0 investment cost Flat roof Roofs **Construction cost** 2.535.764 Ground floor £ [€] Floor next to unheated RES 5% Walls External wall HVAC 18% Wall next to unheated DHW 2% Windows Windows Shading Systems VMC 5% External Doors Heating 10% Internal Elemen Internal partition 6% Windows ts Internal door **Final Energy Consumption** Heating system 1 Building Services Energy demand heating [kWh] DHW production 32.688 Cooling system 1 Energy demand cooling [kWh] 785 Ventilation unit Energy demand DHW [kWh] Electric 11.138 Hydraulic system Household elt. + 47.258 Oth RE er S aux. [kWh] ΡV Annual RES Other 32.688 generation [kWh]

Material cost [€] ■ Labour cost [€]


46

48.895


Annual CO₂


Emissions [kgCO₂]

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
5.548.872 €	916.519 €	30%	4.588.972 €	576.689 €	3%

ENERGY& MAINTENANCE

100% —		
80% —		
60% —		
40% —		
20% —		
0% —		
Maint	enanc	e
Energ	y proe	duced
Energ		

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	28 €/m ²	
		143 €/m ²	Definitive	115 €/m ²	
			Executive	- €/m²	
				Building Elements	348€/m ²
	Investment		Materials	Building Services	162€/m ²
	1474 €/m²	Construction	1593 €/m ²	RES	43
		1208 €/m ²		Other	
			Labor	43 €/m ²	
			611 €/m ²		
LCC (40)		Building site management	124 €/m²		
2185		Energy	Consumed 296 €/m ²	Heating	105€/m ²
€/m ²				Cooling	3 €/m ²
				DHW	36€/m ²
		275 €/m ²		Household el.+ aux.	152€/m ²
	Operation		Produced		
	711 €/m²		21 €/m²		
		Maintenance	Envelope	156 €/m ²	
		436 €/m ²	HVAC	225 €/m ²	
			RES	43 €/m ²	
		0.1 120/2			

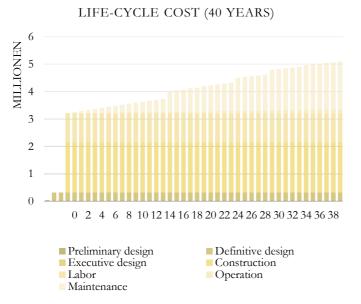
Other $13 \notin m^2$

DEMO CASE 10: "VÄLA GÅRD" – SKANSKA

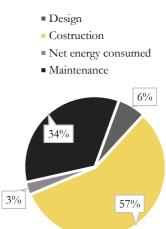
GENERAL INFORMATION

Architect: Tengbom

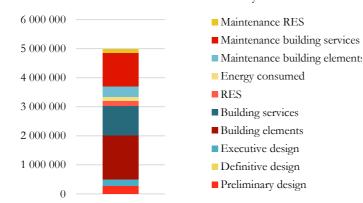
Energy concept: Net ZEB


Location: Helsingborg (Sweden) Construction Date: 2012

Net floor area: 1670 m²


Primary Energy Demand: 101 kWh/(m²a)

Key technologies: well insulated and air tight, balanced ventilation with heat recovery, ground source heat pump, photovoltaics


MATERIALS & DESIGN INVESTMENT COST LABOR 100%Design Materials Labor Building site 100% 80% 80% 31% 60%7% 60% 40% 40% 20% 20% 0%0% 53% ■ Materials Definitive Design ■ Labor Preliminary Design BUILDING SITE MANAGEMENT **INVESTMENT COSTS DESIGN COSTS CONSTRUCTION COST** 2.940.069 € 319.000 € 228.650 € 2.894.449 € Impact of nZEB Material and labor cost [€] technologies on the 50 000 100 000150 000200 000250 000300 000350 000 0 investment cost Flat roof 2.894.44 Construction cost Roofs Pitched roof 9€ [€] Ceiling nex to unheated RES 6% Ground floor Wal ls HVAC External wall 25% Windows DHW 1% Windows Shading Systems VMC 12% External Doors Heating 11% Internal partition Internal Elements Windows 6% Internal floor Internal door **Final Energy Consumption** Stair Energy demand heating [kWh] 5.631 Lift Energy demand cooling [kWh] Heating system 1 Building Services 2.398 DHW production Energy demand DHW [kWh] Ventilation unit 4.677 Electric Household elt. + aux. 4.028 [kWh] Hydraulic system Oth RE Annual RES S ΡV _ generation [kWh] er Other Annual CO₂ 3.750 Emissions [kgCO₂] Material cost [€] ■Labour cost [€]

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY (40)	RES/LCC
5.548.872 €	916.519 €	30%	4.588.972 €	576.689 €	3%
	Breakdown of the	e Life Cycle Cost		ENERGY &	

ENERGY & MAINTENANCE

1,11,111		11110	
100% —			
80% —	-		
60% —	_		
40% —	_	-	
20% —	_		
0% —			
Ma	intenar	nce	
En	ergy pr	oduce	d
	ergy co		
- L11	cigy cc	insume	Ju

BREAKDOWN OF THE UNITARY LCC

		Design	Preliminary	151 €/m²	
		25 €/m ²	Definitive	- €/m²	
			Executive	126 €/m ²	
			Materials 1012 €/m ²	Building Elements	439€/m ²
	Investment 1620 €/m ²			Building Services	403€/m ²
		Construction		RES	70€/m ²
		1595 €/m ²		Other	
			Labor	100 €/m ²	
			592 €/m ²		
LCC (40) 2931 €/m ²		Building site management	- €/m²		
				Heating	64 €/m ²
			Consumed	Cooling	12 €/m²
		Energy	296 €/m²	DHW	6 €/m ²
		78 €/m ²		Household el.+ aux.	114€/m ²
	Operation		Produced		
	1034 €/m ²		21 €/m²		
		Maintenance	Envelope	197 €/m²	
		956 €/m ²	HVAC	643 €/m ²	
			RES	69 €/m²	
		O 1 10 0 / 0			

Other 48 €/m²

DEMO CASE11: "ASPERN IQ" – ATP SUSTAIN

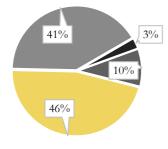
GENERAL INFORMATION

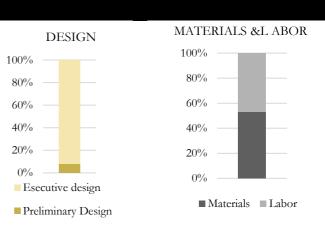
Architect: ATP Wien

Energy concept: Renewables, environmental and waste heat

Location: Vienna (Austria)

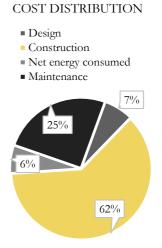
Construction Date: 2012

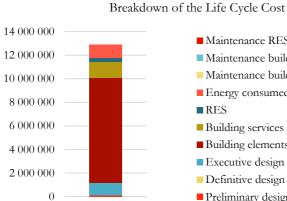

Net floor area: 8817 m²


Primary Energy Demand: 54 kWh/(m²a)

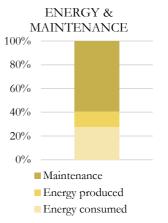
Key technologies: ground water heat pump, photovoltaics, small wind turbine.

INVESTMENT COST


Design • Materials • Labor • Building site



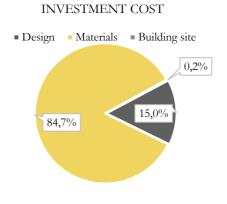
INVESTMENT COSTS 12.318.166 €				UILDING SI ANAGEMEI		RUCTION COS	
		1.170.0	1.170.000 €		343.695€		10.804.471 €
Materia	al and labor cost [€]	0 500 000	1 000 000	1 500 000	2 000 000	Impact of nZEB on the invest	
Roofs	Flat roof Ceiling nex to unheated Ground floor	-				Construction cost [€]	10.804.471€
$ m R_{o}$	Floor next outside	,				RES	3%
	Floor next to unheated External wall					HVAC	12%
Walls	Wall next to unheated	-				DHW	1%
	Wall next to ground Windows					VMC	4%
7indc	Shading Systems External Doors					Heating	2%
nal entsW	Internal partition					Windows	4%
Internal ElementsWindows	Internal floor Internal door		-		-	Final Energy C	Consumption
tural ents	Foundations Raising structure Balcony	-				Energy demand heating [kWh]	25.798
Structural Elements	Stair Lift	_				Energy demand cooling [kWh]	1.576
50 s	Other Heating system 1					Energy demand DHW [kWh]	16.434
Building Services	DHW production Cooling system 1					Household elt. + aux. [kWh]	26.044
R ES	Ventilation unit PV Other					Annual RES generation [kWh]	28.755
r he O		rial cost [€] ■La	lbour cost [€]		Annual CO ₂ Emissions [kgCO ₂]	11.775

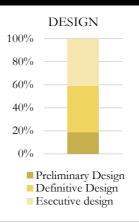


21.089.553 € 4.419.802 € 36% 17.853.288 € 1.115.320 €	21/0

OF LCC BREAKDOWN HE UNITAR

		Design	Preliminary	9 €/m ²	
		110 €/m ²	Definitive	- €/m²	
			Executive	101 €/m ²	
				Building Elements	360€/m ²
	Investment 1160 €/m ²		Materials	Building Services	127€/m ²
		Construction	538 €/m ²	RES	33€/m ²
		1017 €/m ²		Other	
			Labor	19 €/m ²	
			479 €/m ²		
LCC (40)		Building site management	32 €/m ²		
1681 €/m²				Heating	50 €/m ²
			Consumed	Cooling	1 €/m ²
		Energy	195 €/m²	DHW	21 €/m²
		105 €/m ²		Household el.+ aux.	123€/m ²
	Operation		Produced		
	521 €/m ²		90 €/m ²		
		Maintenance	Envelope	161 €/m²	
		416 €/m ²	HVAC	229 €/m ²	
			RES	21 €/m²	
		Other 6 €/m ²			


DEMO CASE 12: "I.+R. SCHERTLER" – ATP SUSTAIN

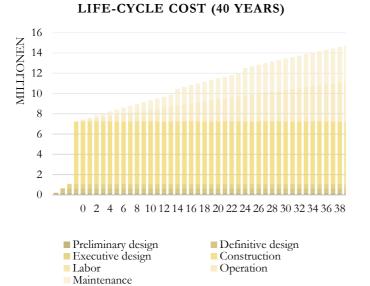


GENERAL INFORMATION

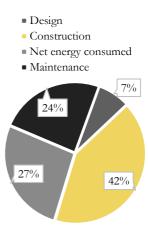
	Architect: Dietrich Untertrifaller Architekten
7	Energy concept: natural materials and renewable energy
	Location: Lauterach (Austria)
	Construction Date: 2011-2013
	Net floor area: 2759 m ²
	Primary Energy Demand : 257 kWh/(m ² a)
	Key technologies: reversible geothermal heat pump

INVESTMENT COSTS

INVE	STMENT COSTS	DESIGN COSTS	BUILDING SITE MANAGEMENT	CONSTRUC	TION COS
7.262.882 € Construction cost [€]		7.262.882 € 1.091.910 €		6.154.172 €	
		0 500 000 1 000 000 1 500	000 2 000 000 2 500 000	Impact of nZEB technologies on the investment cost	
Ro ofs	Flat roof			investmen	t cost
Walls	External wall			Construction cost [€]	6.154.172 €
W ₂	Wall next to unheated			cost [€]	t
SW	Windows			RES	- %
Windows	Shading Systems			HVAC	14%
M	External Doors			DHW	0%
Internal Elements	Internal partition			VMC	4%
	Internal floor				
	Internal door	-		Heating	9%
ЧE	Shell structure			Windows	10%
erna	Stair			Final Energy Co	nsumption
Int	Lift			Energy demand	-
	Other			heating [kWh]	48.059
50 ss	Heating system 1			Energy demand	474
vice	DHW production			cooling [kWh]	
Building Services	Ventilation unit			Energy demand DHW [kWh]	555
	Electric			Household elt. +	205.074
Other	Other			aux. [kWh]	385.974
Õ	Garden, plans	terial cost [€] ■Labour cost [€		Annual RES generation [kWh]	48.059
				Annual CO2 Emissions [kgCo ₂]	23.1042


8 000 000

6 000 000


4 000 000

2 000 000

0

COST DISTRIBUTION

40%

20%

0%

Maintenance

Energy produced

Energy consumed

WLCC (40)	MAINTENANCE	MAINT./INVEST.	LCC (40)	ENERGY	(40)	RES/LCC
14.924.281 €	3.565.616 €	49%	14.758.951 €	3.930.45	2€	-%
16 000 000	Breakdown of the	Life Cycle Cost			RGY & ENANCI	E
		Maintenance RES		100%		
14 000 000 — 12 000 000 —		Maintenance building se Maintenance building ele		80%		
10 000 000		Energy consumed		60%		
8 000 000		RES		40%		

BREAKDOWN OF THE UNITARY LCC

Building services

Building elements

Executive design

Definitive design

Preliminary design

		Design	Preliminary	63 €/m²	
		339 €/m ²	Definitive	138 €/m ²	
			Executive	138 €/m ²	
				Building Elements	1332€/m
	Investment 2252 €/m ²		Materials 538 €/m ²	Building Services	435€/m ²
		Construction		RES	0€/m ²
		1908 €/m ²		Other	
			Labor	141 €/m²	
LCC (40) 4576 €/m²			- €/m²		
		Building site management	5€/m ²		
		<u> </u>		Heating	50 €/m ²
			Consumed	Cooling	1 €/m ²
		Energy	1219 €/m ²	DHW	21 €/m ²
		1219 €/m ²		Household el.+ aux.	123€/m ²
	Operation		Produced		
	2324 €/m ²		- €/m²		
		Maintenance	Envelope	596 €/m ²	
		1105 €/m ²	HVAC	467 €/m ²	
			RES	0 €/m ²	
		0.1 (0.0/ 0			

Other 42 €/m²